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ABSTRACT 
The EU ROADEX Project 1998 - 2007 is a trans-national roads co-operation aimed at develop-
ing ways for interactive and innovative management of low traffic volume roads throughout the 
cold climate regions of the Northern Periphery Area of Europe. Its goals have been to facilitate 
co-operation and research into the common problems of the Northern Periphery. 

The overall objective for this research task was to increase the understanding for road user’s 
health risks when riding on roads in poor condition. Better knowledge will facilitate the reduction 
of the risks, by means of improved pavement management, more conscious truck, bus and am-
bulance operations, and inspire to vehicle suspension systems improvements. 

The report commences with generic descriptions of how safety and health can be affected by 
ride vibration, how truck suspension systems isolate and amplify vibration at various frequen-
cies, and how pavement properties, such as cross slope, control the important forces at work.  

A case study is reported from the Beaver Road 331 in northern Sweden. A heavy timber logging 
truck was instrumented to measure ride vibration and direction. Measurements were taken at a 
range of points (seat, cab, frame and wheels) and the results stored together with data on 
speed and interior noise. Ride vibration data from repeated rides over a 280 km long round trip 
from forest to coast industries was then compared with reference data on pavement condition, 
scanned by a laser/inertial Profilograph. Results obtained included: 

• The daily exposure to Whole-Body Vibration, the A(8)-value, for timber truck drivers rid-
ing constantly on roads such as Rd 331 were unacceptably high, when compared to the 
health and safety Action Value in Directive 2002/44/EC. 

• The truck drivers were exposed to unacceptably health risks in the back when driving at 
modest speed over the worst bumps, due to high spinal compression doses, Sed, as per 
the ISO 2631-5 standard. 

• A derived draft limit of 0.30 % for undesired variance in cross slope. This could be useful 
in pavement management to prevent roll-motion and lateral forces in road vehicles. 

The case study also produced valuable spin-offs in new methods for analyzing traffic safety 
risks arising from incorrectly banked curves and low drainage gradients. Hospital records from 
accidents at Rd 331 (mainly skid accidents) were found to match road sections with high cross 
slope variance, curves with incorrect superelevation, transition sections with low drainage gradi-
ents, and sections with high skid risk due to low/varying Macro Texture. These serious findings 
call for both short and long term actions. Road agencies should use the demonstrated methods 
to quickly identify hazardous sites and warn road users of them. Road repair planning and prac-
tices should be improved, and funding for road repair should be increased. 

An extraordinary insight after the case study is that many new roads all over the EU Northern 
Periphery area have skid risks inbuilt due to low drainage gradients at entrances and exits of 
certain curves. These risks should be eliminated by modification of road design codes, road de-
sign software, road construction practices, and improved end quality control. 



 Page 8  

 

ROADEX III The Northern Periphery Research 

Chapter 1. THE ROADEX PROJECT IN BRIEF  
The ROADEX Project is a technical co-operation between roads organisations across northern 
Europe that aims to share roads related information and research between the partners. The 
Project was started in 1998 as a 3 year pilot co-operation between the roads districts of Finnish 
Lapland, Troms County of Norway, the Northern Region of Sweden and The Highland Council 
of Scotland and was subsequently followed and extended with a second project, ROADEX II, 
from 2002 to 2005, and now a third project, ROADEX III, from 2006 to 2007. 

The partners in ROADEX III “The 
Implementation Project” comprised 
public road administrations and forestry 
organizations from across the European 
Northern Periphery. These were The 
Highland Council, Forestry Commission 
Scotland & Comhairle Nan Eilean Siar 
from Scotland, The Northern Region of 
The Norwegian Public Roads 
Administration, The Northern Region of 
The Swedish Road Administration and 
the Swedish Forest Agency, The Savo-
Karjala Region of The Finnish Road 
Administration, the Icelandic Road 
Administration and the Municipality of 
Sisimiut from Greenland. 

A priority of this Project was to take the collected ROADEX knowledge out into the Partner ar-
eas and deliver it first hand to practising engineers and technicians. This was done in a series of 
14 seminars across the Partner areas to a total audience of 800. Reports were translated into 
the 6 partner languages of Danish, Icelandic, Finnish, Greenlandic, Norwegian and Swedish as 
well as English. ROADEX research continued through 5 projects: measures to improve drainage 
performance, pavement deformation mitigation measures, health issues of poorly maintained 
roads, road condition management policies, and a case study of the application of ROADEX 
methodologies to roads in Greenland. All of the reports are available on the ROADEX website at 
www.roadex.org.  
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Chapter 2. Knowledge to find good solutions 
 

 
 

The overall objective for the research task was to increase the understanding of the health risks 
to road users when travelling on poor quality roads. Better knowledge of this will facilitate risk 
reduction, by means of improved pavement management, more conscious truck operations, in-
spire to future vehicle suspension system design improvements, et cetera. 

Three goals were set for the research: 

• The first goal was to assess a typical truck driver’s daily exposure to ride vibration, in re-
lation to the EU Action Value, when driving on a typical Northern Periphery rural round 
trip route.  

• The second goal was to investigate if truck drivers riding on very bumpy roads may be 
exposed to so intensive mechanical shock, that there is a risk for mechanical fatigue 
damage in the hard tissue of their spine intervertebral end plates.  

• The third goal was to validate and draft limits for an indicator of undesired variance of 
pavement lane cross slope. Such variance excites roll motion which is especially prob-
lematic in high (heavy) vehicles. Roll vibration may not only be uncomfortable and un-
healthy, but it also brings transient lateral forces that may cause skid accidents on slip-
pery surfaces.  

If the third goal was reached, it was hoped that the new pavement condition indicator could be 
put into daily practice by road agencies in their pavement management systems. Through this it 
could be possible to identify hazardous sections and have them repaired. Many roll-related skid 
accidents could thus be prevented and truck driver’s exposure to vibration and health risk de-
creased. 
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Chapter 3. Human, vehicle and road interaction 
 

 

Many readers will be able to read and appreciate the subsequent chapters, without first reading 
this rather long chapter. However, since the research topic covers several disciplines, it is likely 
that some readers may appreciate a condensed background that can bridge minor gaps of 
knowledge in unfamiliar disciplines. This chapter gives a brief summary on ride vibration and its 
effect on human beings. It also gives an introduction to heavy vehicle chassis dynamics. Finally, 
it shows how road geometry and condition of the pavement excite vital ride forces and vibration. 

3.1 RIDE VIBRATION AND ITS EFFECT ON HUMAN BEINGS 

3.1.1 General health risks associated with ride vibration 
Back disorders are costly to society and are the main causes of sick leave in the working com-
munity. They cause great pain to those suffering, and are a significant economic burden to soci-
ety. Professional drivers are a group of workers that have been found to be at high risk for back 
disorders. Many epidemiological studies have been made on the relationship between back dis-
orders and vehicle operation with vibration exposure. The results show overwhelming evidence 
of a relationship that is consistent and strong, which increases with increasing exposure, and is 
biologically plausible. The risk is elevated in a broad range of driving occupations, including 
truck and bus drivers. Vibration exposure data indicates that current vehicles are likely to ex-
pose drivers to vibration levels in excess of the EU Action Value, as defined in directive 
2002/44/EC [2]. Common control measures, such as seat suspension, are often not effective in 
the low frequency range where vibration energy peaks during most highway rides. A causal link 
has been found between back disorders, driving occupation and ride vibration. Numerous back 
disorders are involved, including lumbago, sciatica, generalized back pain, and intervertebral 
disc herniation and degeneration. Elevated risks are consistently observed after five years of 
exposure, see Teschke et al (1999) [1]. 

Whole-Body Vibration (WBV) is the term used to describe mechanical vibration and shock 
transmitted to the human body as a whole, usually through areas of the body (buttocks, soles of 
the feet and the back) in contact with a vibrating surface as seen in Figure 1. Vehicles travelling 
over rough surfaces expose people to periodic, random and transient ride vibration. Ride vibra-
tion contains many frequencies, occurs in several directions (bounce, pitch and roll) and 
changes over time. Exposure to ride vibration causes various patterns of oscillatory motions and 
forces within the human body; a complex, intelligent and active structure. WBV within the range 
0.5 – 80 Hz cause resonance in various parts of the human body, such as the eye globes, head, 
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spine and stomach. Thus, WBV exposure may cause1 stressing discomfort or annoyance, influ-
ence human performance capability or present a health and safety risk (e.g. pathological dam-
age or physiological change). The response to ride vibration varies in a confounding way; while 
bumps have a stressing alarm effect, the rocking motion when riding over long wave undula-
tions results in drowsiness. 

 

Figure 1  Whole-Body Vibration. From the EU Guide to good practice on WBV (2006) [24] 

 

Bovenzi & Hulshof (1999) [47] reviewed epidemiologic studies conducted between 1986 and 
1997 on the relationship between exposure to vibration and problems in the lumbar part of the 
back. The review provided “clear evidence for an increased risk for LBP disorders in occupa-
tions with exposure to WBV. Biodynamic and physiological experiments have shown that seated 
WBV exposure can affect the spine by mechanical overloading and excessive muscular fatigue, 
supporting the epidemiologic findings of a possible causal role of WBV in the development of 
(low) back troubles”. It is estimated that 4 - 7% of the working population in the EU are exposed 
to potentially harmful Whole-Body Vibration. 

The National Institute for Occupational Safety and Health reports that musculoskeletal injuries, 
such as low back pain, vertebrogenic pain, and degenerative disk disease, account for 1 out of 
5 of emergency-room-treated occupational injuries. Physical demands of many jobs make the 
musculoskeletal system highly vulnerable to a variety of occupational injuries and illnesses. 
WBV is one of the most important etiologic factors behind development of these disorders [27].  

Hedberg (1991) [32] reported that the risk for certain types of cardiovascular disease in Sweden 
is more than three times higher for commercial drivers than for the average worker. An in-
creased risk of myocardial infarction among professional drivers was first reported about 50 
years ago, and has been reported repeatedly since then. Stress under certain driving conditions 

                                                 
1 A thorough guidance on evaluation of human exposure to ride vibration is given in part 1 and 5 of the international 
standard ISO 2631 [18] [5]. 
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is considered to explain the raised level of stress hormones found in commercial drivers, and is 
believed to cause a large proportion of the health problems, see Hedberg (1993) [33]. The in-
creased incidence and mortality from ischemic heart disease among Swedish truck drivers has 
remained constant over the period 1985 – 1996, as shown by Bigert et al (2004) [26]. Hedberg 
& Langendoen (1989) [34] showed that amongst older commercial drivers, musculoskeletal 
problems and cardiovascular diseases are the primary reasons for changing their occupation. 

3.1.2 Truck and bus drivers vibration exposure may exceed the EU Action Value 
The European health and safety directive on physical agent vibration, 2002/44/EC [2], defines a 
measure A(8) for workers’ 8 hour daily exposure to Whole-Body Vibration. If the A(8) exceeds 
the Action Value of 0.5 m/s2, the directive demands employers to take organizational and/or 
technical measures to minimize the vibrations. Work tasks that bring exposures above the limit 
A(8) = 1.15 m/s2 are prohibited. In Sweden the exposure limit is sharpened into 1.1 m/s2. Since 
2005, the directive minimum requirements have been implemented in all EU member state na-
tional laws. The directive is showed in Figure 2.  

 

Figure 2  EU Physical Agents Directive � Vibration 2002/44/EC [2], front page 
 

Professional drivers may be exposed to high vibration exposure and risk. The main reasons are 
that vibration intensity is higher in heavy vehicles (as compared to passenger cars), and the ex-
posure time is often close to 8 hours per day. Ahlin et al (2000) [3] collated the vibration expo-
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sure of truck drivers with road roughness, vehicle type and condition, as well as with driving be-
haviour such as speed. Among the conclusions were that many heavy vehicle drivers in Swe-
den may be exposed to vibrations above the EU Action Value A(8) = 0.5 m/s2. Within reason-
able ranges, the degree of road roughness was found to have much larger impact on driver’s 
WBV exposure, than factors such as driving speed, vehicle type and vehicle condition.  

3.1.3 Bumps are of special concern to both ride quality and health 

3.1.3.1 Measuring discomfort due to bumpy rides 

Human exposure to occasional shock has large impact on the perceived ride quality. It is there-
fore very important that indicators of ride quality reflect comfort disturbance caused by 
shocks/bumps. Four methods to evaluate ride comfort are used all over the world today. A good 
overview of these is given by Els (2005) [60]. Most important is the ISO 2631-1 (1997) [18]. 

Spång (1997) [48] showed that the running Root-Mean-Square (RMS) of the weighted accelera-
tion (using integration time 1 s) is a useful definition of bumpy vibration. This definition corre-
lated very closely with annoyance perceived by a large test panel; R2 = 92 %. The running rms 
method is used for transient vibration in the ISO 2631-1 standard. 

For public transport, the running rms values can be compared to the (dis-)comfort scale in Table 
1. This vibration comfort scale is used for people in public transport on roads, railways, in air 
and at sea. The level of annoyance depends on passenger expectations with regard to trip dura-
tion and the passenger’s activities (e.g. reading, eating or writing) and many other factors 
(acoustic noise and temperature). Therefore limits are therefore not explicit, but include over-
laps.  

Table 1  Indicative comfort reactions of people in Public transportation, as per ISO 2631-1 [18] 

min max Comfort level
> 2 > 2 "Extremely uncomfortable"
1,25 2,5 "Very uncomfortable"
0,8 1,6 "Uncomfortable"
0,5 1 "Fairly uncomfortable"

0,315 0,63 "A little uncomfortable"
0 0,315 "Not uncomfortable"

aw rms

 

Hassan & McManus (2001) [51] showed that professional drivers perceive somewhat lower 
comfort disturbance for a given vibration magnitude, than seen in Table 1. Two causal factors to 
this finding have been identified. First, the driver can see large road obstacles and are better 
prepared, (their resonance-sensitive organs are protected by increased muscle tonus) when the 
resulting vibration comes. Secondly, the driver has a steering wheel in the hands, thus being 
better able to stabilize pitch and fore-aft motion of the upper body. However, there is no special 
comfort scale for professional drivers yet.  

Further reading is given in the section “3.1.4 Especially vulnerable road user groups”. 
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3.1.3.2 Measuring health risk due to bumpy rides 

Sandover (1998) [4] made an review of expert opinion, stating that in general, transient vibra-
tions with multiple shocks are much more hazardous than stationary vibration. In practice, this 
means that bumpy rides typically are unhealthier than ride vibration such as on a modestly 
wash-boarded gravel road. There are many examples demonstrating the risk from bumps, in-
cluding spinal compression fractures when riding snowmobiles or military combat vehicles in 
rough terrain.  

A method to quantify Whole-Body Vibration containing multiple shocks in relation to human 
health was standardized in 2004. The ISO 2631-5 [5], method uses peak vibration values to 
predict compression stress in the spine, and reports equivalent daily static compression dose, 
Sed. A Sed value above 0.8 MPa reflects a high health risk due to transient mechanical shocks. 
In contrast, a Sed value below 0.5 MPa corresponds to a non-significant risk. The employer is 
obliged to perform a risk assessment for workers exposed to repeated mechanical shock, such 
as from bumpy rides. In Sweden, such assessments are, in practice, made in accordance with 
ISO 2631-5. Results from such assessments of professional drivers emphasize the importance 
of a smooth road surface to keep health risks low. 

Repeated driving over bumps, resulting in transient vibration yielding a Sed over 0.5 MPa, may 
be prohibited by the Work Environment Administration. One example is the recent prohibition, 
coupled with a 1 000 000 SEK (over 100 000 €) fine, against risks associated with line bus traf-
fic over severe traffic calming speed humps on Vikingavägen (the Viking Road) and Luf-
thamnsvägen (the Airport Road) in Täby, Sweden. After the prohibition in the spring of 2007, the 
traffic on several bus routes totally stopped until each hump was repaired or totally removed, so 
that the Sed was reduced to less than 0.5 MPa. See Brandt & Granlund (2008) [6]. 

Marjanen (2005) [61] studied transient vibration in 25 mobile machines for 30 hours. The results 
showed that the ISO 2631-5 method, based on Sed value, gave a worse rating of bumpy expo-
sures than the ISO 2631-1 method based on RMS-value. The latter is relevant for calculation of 
the daily vibration exposure A(8), as defined in the directive 2002/44/EC [2]. An illustrating result 
was an “uncomfortable” exposure with RMS = 0.85 m/s2, gave a Sed –value of 2.92 MPa. So 
while the RMS was below the exposure limit of A(8) = 1.15 m/s2, the exposure was high above 
the 0.8 MPa limit for high health risk defined in ISO 2631-5. 

When investigating methods applicable to tactical ground vehicles, Alem (2005) [62] found the 
ISO 2631-5 method to be more sensitive to cross-country terrain rides than other standards. 
The report mentions an anecdote on hematuria (blood in the urine) being observed in 50 % of 
the company, after completing a military exercise mission. 

According to the ISO 2631-5 standard, the X-Y axis natural frequencies in the human spine are 
about 2.1 Hz. Therefore it is important that humans are not exposed to strong vibrations at fre-
quencies around 2.1 Hz in or across the direction of travel. This should be recognized, when 
assessing risks associated with undesired variances in pavement cross slope, which in high ve-
hicles can cause transient roll motion accompanied by lateral (and vertical) vibration. 

Further reading is given in the following section “3.1.4 Especially vulnerable road user groups”. 
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3.1.4 Especially vulnerable road user groups  
Some people are especially vulnerable to vibration. Bumpy rides may be detrimental to:  

• People with certain disabilities, diseases or injuries. 
• Pregnant women and their unborn babies, see Armstrong et al (1988) [36] and Council 

Directive 92/85/EEC. 
• Injured ambulance patients. 

The Academy of Pediatrics (1999) [29] states, that ambulance transports may cause decreased 
vascular tone, manifested by unexpected decreases in blood pressure. Ride vibration may 
cause care equipment to come loose, cause settings to change, or produce disturbances in 
monitors and equipment. Furthermore, vibration may decrease the ambulance nurse’s ability to 
perform care procedures.  

Many ambulance patients report that the pain suffered during the transport as being the worst 
experience in their whole life. [Personal communication with Leif Leding of the Swedish Ambu-
lance Academy]. 

The European trend towards fewer and more specialised hospitals is resulting in a greater per-
centage of ambulance transports having to cover longer distances while simultaneously admin-
istering intensive care. To manage this more, and heavier, medical equipment is required to be 
carried on board. As a consequence of this, modern ambulances must have a greater load ca-
pacity than before. Large vehicles, with a similar design to trucks, are needed. An effective load 
capacity of more than 1 tonne is common for Mobile Intensive Care Units (MICU). Ahlin et al 
(2000) [3] showed that ride vibration is significantly worse in large MICU ambulance vehicles, 
than in small Emergency Ambulance vehicles.  

One of the few efficient methods to reduce ride vibration in ambulance cars, is for the driver to 
“read” the pavement surface condition and by risky driving avoid the worst roughness, as seen 
in Figure 3. 

 
Figure 3  Emergency Ambulance on wrong side of Road 331, avoiding edge deformations  
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3.1.5 Vibration intensities in road vehicles and mobile machinery 
Most road vehicles, including modern trucks with suspended cabs, have fairly low levels of 
Whole-Body Vibration (WBV), given that the pavement is in good condition. Vehicles with less 
effective suspension, such as trucks with non-suspended cabs, may cause high WBV levels. 
Heavy truck vertical vibration is maximum when the truck is unloaded, while roll and lateral vi-
bration tend to peak when the truck has full payload. Of course, the WBV exposure is very de-
pendent on the quality of road surfaces, vehicle speeds and other factors such as how the vehi-
cle is operated. Therefore, it is often necessary to measure the vibrations, or the road condition, 
in order to make an accurate risk assessment. An indicative example of vibration levels in road 
vehicles is given in Table 2. As can be seen from the table, the A(8) EU Action Value of 0.5 m/s2 

corresponds to a work environment being on average “fairly uncomfortable” for the full working 
day. 

Table 2  Indicative example of Whole-Body Vibration magnitudes in road vehicles 

Passenger cars     0.1 to 1 m/s2 average for route. 
       Up to 2 m/s2 at bumps. 

Heavy trucks      0.2 to 1.6 m/s2 average for route. 
       Often over 2 m/s2 at bumps. 

Reference on comfort, as per ISO 2631-1 [18] < 0.315 m/s2 is “not uncomfortable”. 
       > 0.5 m/s2 is “fairly uncomfortable”. 

EU Action Value [2]     A(8) = 0.5 m/s2, “average over 8 hours” 

From the table, it can be seen that truck drivers are exposed to markedly higher vibration inten-
sity than car drivers. Campbell et al (1981) [35] explained some reasons: 
 

1. Driver location - namely, the truck driver is usually located at the extremities of the vehi-
cle, rather than near its centre of gravity. 

2. Trucks are more dynamically active at low frequencies of excitation, as caused by the 
use of articulation for manoeuvrability and frame flexibility for durability 

3. Truck suspension systems possess substantial amounts of dry friction, thereby transmit-
ting more road input to the vehicle. 

 
The chassis suspensions on heavy vehicles are also designed for a much wider range of pay-
load, than on passenger cars. In addition, heavy vehicles have heavier unsuspended masses 
(tyre, rim, brake and axles) than cars do. When the unsuspended mass hits a bump, it transfers 
energy to the vehicle body. A heavier mass can transfer more vibration energy than a lighter 
mass.  
 
For a general comparison purpose, examples of typical vibration levels in mobile machinery 
used in civil engineering, forestry and industry works are given in Table 3. For machines that are 
often operated at considerable speed, such as graders and tractors, the highest vibration levels 
are usually generated in road transport mode. The table has been reproduced from the EU 
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Guide to good practice on Whole-Body Vibration [24], which gives useful guidelines to reduce 
risks from WBV exposure. 
 
Table 3  Examples of WBV magnitudes in common mobile machinery [24] 
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3.1.6 Ride vibrations have a negative effect on traffic safety 
In the mid 1970’s, the exposure of truck drivers to vibration was an issue raised at the federal 
government level in the USA, formulated as “Do vibrations (as well as noise, toxic fumes and 
other factors that contribute to truck “ride quality”) have a negative effect on driver health and on 
highway safety?” Eventually, a five-year research programme, “Ride Quality of Commercial Mo-
tor Vehicles and the Impact on Truck Driver Performance”, answered this question. The findings 
were summarised in the report Truck Cab Vibrations and Highway Safety [30]. This report was 
jointly produced by leading researchers, road authorities, vehicle manufacturers, hauliers and 
commercial drivers. It shows that the answer to the key question as to whether there is any cor-
relation between cab vibrations and road safety is YES; see illustration in Figure 4. Yes, there is 
good reason to believe that vibrations affect drivers’ health, and that vibration must be elimi-
nated at source through effective road maintenance rather than merely dampened. The report 
concludes that if road network deterioration is allowed to continue, the result will be serious 
health and road safety problems. 

 
Figure 4  The primary elements in the link between truck ride vibration and safety [30]. 
 

When studying Figure 4, take note of the described driver response in terms of stress and car-
diovascular effects. This associates with the research results on increased level of stress hor-
mones and mortality from ischemic heart disease, referred in the previous section “3.1.1 Gen-
eral health risks associated with ride vibration”.  
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The most common lethal truck accident mode is rollover. Less common modes are jack-knifing 
and trailer swing. Jack-knifing means the accidental folding of an articulated vehicle, similar to a 
pocket knife. When the prime mover skids, the trailer can push it from behind until it spins round 
and hits the trailer. Adverse road conditions, such as a slippery road surface, or an obstacle (i.e. 
curbs) hitting the rear wheels, may contribute to jack-knifing. Most truck drivers are skilful 
enough to correct a skid before the vehicle combination undergoes jack-knifing. Trailer swing is 
easier to correct. Side forces that result from cornering, operating on a crowned road, and side 
winds accelerate the jack-knife situation. 

Research by Ihs et al (2002) [31] confirms a positive correlation between road roughness (ride 
vibration) and traffic accident2 frequency (crash risk) in Sweden, see Figure 5. Rough roads with 
an IRI3-value over 3 mm/m show more than 50 % higher crash rate than smooth roads with an 
IRI below 0.9 mm/m. The study also showed that as roughness becomes very severe (over 10 
mm/m), the crash rate increases even more than shown by the slope of the linear graphs. 

The graphs at Figure 5 also show that the crash rate is much higher in the winter, than in the 
summer. This is due to factors such as lower road surface friction on icy roads and darker driv-
ing conditions. 

Figure 5  Rough roads have > 50 % higher crash rate. After Ihs et al [31] 
 

                                                 
2 In the study, accidents in junctions and with wild animals were excluded. 
3 IRI = International Roughness Index 
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3.1.7 Summarizing health and safety risks for EU Northern Periphery road users 
The Swedish National Institute of Public Health has found that in Sweden, the most common 
types of preventable mortalities are lung cancer (death rate of 17.1), suicide (15.4) and cerebro-
vascular disease (11.8). Among the therapeutic treatable death causes, diabetes mellitus is 
worst with a death rate of 4.5. Road traffic crashes are worse, with a death rate of 4.9 on aver-
age for the whole country. However, there are large differences in the risk of being killed in a 
road traffic accident between different areas in Sweden. While the urban areas of Stockholm, 
Gothenburg and Malmoe have a Standardised Mortality Ratio (SMR) of 70 for road traffic 
crashes, the rural areas have a SMR of 177. This means that road users in the rural areas have 
153 % higher risk in ending up in a lethal crash, as compared to road users in large cities. Of 
the rural counties in Sweden, Jämtland and Västernorrland have the highest SMR for road traf-
fic crashes. In these counties, road traffic crashes are taking 39 % more lives than diabetes is 
[58]. 

This chapter has clearly showed that EU Northern Periphery road users are exposed to serious 
health and safety risks. Professional drivers are exposed to a very high risk for stress-related 
cardiovascular diseases, having three time higher rate for certain types of cardiovascular dis-
ease than other people. They are also exposed to high risk for musculoskeletal problems. All 
road users in the Northern Periphery are at high risk for being injured in traffic crashes on rough 
and poorly maintained roads. These serious findings call for responsible corrective actions. 
Such actions must be very well focused, since the available funds are sparse compared to the 
size of the Northern Periphery road networks. 

 

 



 Page 21  

 

ROADEX III The Northern Periphery Research 

3.2 AN OVERVIEW OF HEAVY TRUCKS DYNAMICS 
Why do truck suspension systems isolate some vibrations very well, yet amplify others? This 
section will attempt to answer this type of question. The following texts are inspired by several 
sources, including handbooks such as the Fundamentals of Vehicle Dynamics [7]. The suspen-
sion performance figures come from a presentation on heavy trucks dynamics [8], and are re-
printed with kind permission by MSc Henrik Lindh, supervisor on vehicle dynamics at Volvo 3P. 

3.2.1 Sources of truck ride vibration 
The term ride4 vibration describes motion with frequencies from 0.5 to 25 Hz. Truck vibrations in 
the ride frequency range are excited by both internal and external sources. Internal sources in-
clude engine combustion pulses, power train imbalance, non-uniform wheel geometry and non-
uniform tyre stiffness. External sources include pavement roughness, pavement deflection vari-
ance [9] and air pressure variance (wind load, or air bursts from fellow vehicles or reflections 
from road tunnel walls). 

3.2.2 Influence of road roughness, vehicle factors and speed 
In brief, truck cab vibrations are primarily determined by road condition, with vehicle properties 
being secondary, as seen in Figure 6 by Forssén (1999) [10]. Note the “0.00” effect of tyre pres-
sure variance. This result is from tests within normal pressure level recommendations, while ex-
tremely low pressures when using Central Tyre Inflation (CTI) systems have a large effect.  

 

Figure 6  Effect of road roughness and vehicle properties on truck cab vibration [10]. 

 

There is, in general, also a strong positive correlation between speed and vibration. At speed 
levels below some 30 km/h, such as in parking lots and during off-road driving at construction 
sites, an increase in speed by one percent will increase vibration several percent.  

                                                 
4 Many vehicle engineers distinguish between RIDE as < 5 Hz and SHAKE as 5 – 25 Hz vibration. 
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At highway speeds however, the effect of speed on ride vibration is rather small. To reduce vi-
bration a certain percent, it may be necessary to reduce speed twice as much. An example from 
a 20 km test site is given in Figure 7. A 29 % speed reduction (from 70 km/h to 50 km/h) re-
sulted in only 18 % reduction in average vibration and 15 % reduction in maximum vibration. 
Also at 30 km/h, the 0.5 m/s2 EU Action Value was exceeded. The speed limit was 90 km/h [9]. 

Ahlin & Granlund (2002) [11] showed in a theoretical analysis that when driving at highway 
speed levels, a large effect of speed change on ride vibration can only be expected when the 
road roughness consists of high amplitudes at long wavelengths. If there is a high degree of 
roughness with intermediate-length, the speed must be reduced to parking lot speed level, i.e. 
below 20 km/h, in order to reduce vibration significantly. If only very short wave roughness is 
present, the chassis vibration may in fact be reduced by increasing the driving speed. (The latter 
is a very rare exception however, since most rough roads also have high amplitudes at long 
wavelengths). 
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3.2.3 Heavy trucks have several suspension systems 
All highway vehicles have a suspension system designed to isolate vertical vibration from the 
wheels to the vehicle body. The primary functions of a chassis suspension system are to [7]: 

• Provide vertical compliance so the wheels can follow uneven road surfaces, while isolat-
ing the vehicle body from the road’s roughness. 

• Maintain the wheels in proper steer and camber attitudes to the road surface. 
• React to tyre control forces – longitudinal (acceleration and braking) forces, lateral (cor-

nering) forces, and braking and driving torques. 
• Resist chassis roll motion. 
• Keep the tyres in contact with the road under minimal load variations. 

Obviously, chassis suspension systems must meet many more demands - not least in a safety 
perspective - than to “only” isolate the cab from vibration and shock of various frequencies, di-
rections, amplitudes and interacting histories.  

A modern heavy truck has several suspension systems, as seen in Figure 8. In fact, the trucks 
frame may also be considered as a suspension system, with its flexural bending modes. Inside 
the cab, most truck driver’s seats are today also equipped with a suspension system. 

 

 
Figure 8  Heavy trucks have several suspension systems 
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3.2.3.1 The tyre acts like a spring 

Counting from the vibration main source, the road surface, the truck’s first vibration filter com-
prises its tyre.  

 

Due to the enveloping effect of its contact patch, the tyre smears variance in pavement Macro 
Texture (MaTx have waves from 0.5 to 50 mm length) and to some extent Mega Texture (MeTx 
have waves from 50 to 500 mm). The tyre walls also act like springs, which - under noise gen-
eration - further absorb texture variance and interact with the vertical motions of the vehicle 
body and unsprung masses. The tyre does not provide significant damping, with regard to the 
lower frequencies of ride. 

The vertical vibration isolation performance of a typical truck tyre is demonstrated in Figure 9. 
The upper left graph shows an example of road profile spectra (tyre input), while the upper right 
graph shows wheel axle acceleration (tyre output). The bottom curve shows the quotient of road 
“acceleration”5 and axle acceleration. This gain curve shows the tyre’s isolation performance. A 
gain below 1 means that the system is isolating vibration, while a gain over 1 means that it is 
amplifying. As seen, the tyre efficiently isolates vibration with frequencies higher than some 12 
Hz. At the tyre eigenfrequency of about 8 - 12 Hz, vibrations are amplified. This resonance re-
sponse is known as “wheel axle hop”, and contributes to wash boarding of poor dirt roads. Vi-
brations with low frequencies are transmitted straight through the tyre, which then follows the 
road profile like a rigid body. 

                                                 
5 The time domain term “road acceleration” may be somewhat confusing to road engineers. It corresponds to the 
spatial domain term “Slope Variance” (SV). SV was a key parameter in the 1958 – 1960 AASHO Road Test [12], 
used as an index for short wave road roughness. In the giant AASHO Road Test, SV was found to be the most impor-
tant factor behind the Public’s judgement of road serviceability. In fact, the Road Test results showed that SV (road 
roughness) was many times more important for road users ratings, than rutting, cracking and patch repair altogether. 
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Figure 9  Input and output vertical acceleration of a truck tyre [8] 

 

The basic relationship between roughness wavelength (λ ) [unit: m], travel velocity (υ) [unit: m/s] 
and vertical vibration frequency (f) [unit: Hz] is given in Formula 1.  

f
νλ =     

Formula 1, Wavelength, Velocity and Frequency 

 

When driving at 30 km/h (8.3 m/s), the tyre spring resonance of 8 - 12 Hz occurs on 0.7 - 1 m 
road roughness wavelength, as per Formula 1. At 90 km/h, tyre resonance occurs on 2 - 3 m 
waves. 
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3.2.3.2 The chassis suspension isolates the vehicle body from the wheels 

Counting from the vibration main source, the road surface, the truck’s second vibration filter 
comprises its chassis suspension. 

 

The vertical vibration isolation performance of a typical truck chassis suspension is demon-
strated in Figure 10. The upper left graph shows our example of wheel axle acceleration (chas-
sis suspension input), while the upper right graph shows frame acceleration (chassis suspen-
sion output). The bottom curve shows the quotient of the axle and frame acceleration. This gain 
curve shows the chassis suspension’s isolation performance.  

The truck chassis suspension system efficiently isolates vibration with frequencies higher than 
some 5 - 6 Hz. Vibrations with some 2 - 4 Hz are amplified. Vibrations with low frequencies are 
transmitted straight through the suspension. 

When driving at 30 km/h, the suspension resonance of 2 - 4 Hz occurs over road roughness 
with 2 - 4 m wavelength. At 90 km/h, suspension resonance occurs over 6 - 12.5 m roughness 
waves. 

 
Figure 10  Input and output vertical acceleration of a truck chassis suspension system [8] 
 

Ride vibration is typically small in amplitude, involving some tenfold millimetres of suspension 
travel. Many truck suspension systems exhibit nonlinear properties, due to friction in struts and 
bushings, or interleaf friction in leaf springs. Gillespie [7] explains that for small ride motions, the 
effective stiffness may be three times greater than the nominal spring stiffness. Therefore some 
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trucks may actually be more comfortable on roads with a lot of short wave roughness, than on 
roads without such roughness. However, this is not true for long waves and in cars. 

3.2.3.3 Frame beaming 

Counting from the vibration main source, the road surface, the truck’s third vibration filter com-
prises its frame. It is somewhat questionable whether or not to consider the frame as a suspen-
sion system. However, its negative effect on ride is significant at beaming resonance frequen-
cies.  

It is customary to make heavy truck frames flexible, due to commercial demands such as low 
deadweight, fatigue resistance and traction in off-road conditions. 

Figure 11 shows a 34 Degree-Of-Freedom truck model. Here the frame is modelled as consist-
ing of 6 beam sections, connected with longitudinal and torsion springs and dampers (not 
shown). Examples of beaming are showed later, in Figure 13. 

Note the integrated model of the suspended truck engine, constituting a powerful source of in-
ternal vibration with higher frequencies. The first harmonic of an engine running at 1500 rpm is 
at 1500 / 60 = 25 Hz, while higher order engine harmonics have higher frequencies. 

 
Figure 11  Truck model having a flexible frame [8] 
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3.2.3.4 The cab is isolated from the frame 

Counting from the vibration main source, the road surface, the truck’s fourth vibration filter com-
prises its cab suspension.  

 

The vertical vibration isolation performance of a typical truck cab suspension is demonstrated in 
Figure 12. The upper left graph shows our example of frame acceleration (cab suspension in-
put), while the upper right graph shows cab acceleration (cab suspension output). The bottom 
curve shows the quotient of the frame and cab acceleration. This gain curve shows the cab 
suspension’s isolation performance. The system efficiently isolates vibration with frequencies 
higher than some 3 Hz. Vibrations with some 1 - 2 Hz are amplified. When driving at 30 km/h, 
suspension resonance of 1 - 2 Hz occurs on road roughness with 4 - 8 m wavelength. At 90 
km/h, resonance occurs over 12 - 25 m waves. Vibrations with very low frequencies are trans-
mitted straight through the suspension. 

Figure 12  Input and output vertical acceleration of a cab suspension system [8] 
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3.2.4 Net vibration in a truck cab 
As seen in the above graphs, each of the suspension systems in a truck isolate vibration very 
efficiently. This is true for vibration with frequencies above each system’s eigenfrequency. For 
vibration close to an eigenfrequency, resonance results in amplification instead of isolation. 
Resonance is seen as values above 1 in the above gain curves for each system. 

For an articulated tractor-trailer truck cab, an example of net vibration content is given in Figure 
13. The graph has resonance peaks at the eigenfrequencies of each suspension system.  

Note that on the vertical logarithmic scale of the Figure, the cab vibration is many times more 
powerful at 1 - 3 Hz frequencies than at higher frequencies. For highway speeds of 50 - 90 
km/h, the 1 - 3 Hz frequency range corresponds to 5 - 25 m long road unevenness wavelengths. 

 

 
Figure 13  Power Spectral Density of net vibration in a truck cab [8] 
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3.2.5 Seat suspension 
A good seat improves the situation further, and the most efficient vibration isolating seats used 
in road vehicles can be found among truck driver seats.  

Figure 14 shows vertical vibration data taken by Ahlin et al [3] at cab floor and at the driver’s 
seat in a Volvo F12 6x2 timber logging truck, when travelling on National Highway 90 in North-
ern Sweden. By comparing the graphs, it is clear that cab floor vibration at frequencies over 3 
Hz are quite efficiently isolated from the drivers buttocks by the advanced air suspended truck 
seat.  

However, the graph for the seat pan shows highest seat vibration intensity at frequencies be-
tween 1.5 and 2.5 Hz. By comparing the graphs in Figure 14, it is clear that the expensive air 
suspended seat does not isolate vibration, but rather amplifies vibration, at the dominant fre-
quencies below 3 Hz. 

 

Cab floor 

Driver’s seat 

 
Figure 14  Power Spectral Density of vibration on the seat and on the floor in a truck cab [3] 
 
 

32 kilometres of the Hw 90 test section were very rough, while 5 kilometres were smooth. The 
root-mean-square for the weighted vertical acceleration on the seat was 0.96 m/s2 on the 32 km 
very rough section of Hw 90, while the corresponding figure for the 5 km smoother section was 
0.38 m/s2. The figure 0.96 m/s2 from the rough section is much higher than the A(8) = 0.5 m/s2 
action value for an daily eight-hour reference period, set in the health and safety directive 
2002/44/EC [2]. Clearly, the ride vibration problem related to roads with similar roughness (es-
pecially long wave, as indicated from frequency content in Figure 14), is very serious. After the 
truck ride measurements were taken by Ahlin et al [3], the 32 km long rough section of Hw 90 
was reconstructed by Swedish Road Administration. 

A new and promising technology for damping in seat and cab suspension systems is based on 
MagnetoRheology (MR). While developed for seat suspensions, MR-technology may be more 
successful in large vehicle cab suspensions, where it can be used with soft springs without 
comprising ride and stability. LeRoy (2006) [68] claims that MR can provide both roll isolation 
and pitch stability. 
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3.2.6 Wheel axle vibration impacts on traffic safety 
As a truck wheel axle is exposed to roll vibration, any arbitrary point at its outermost parts (as 
well as on the attached wheels) moves in lateral direction. This results in distortion to the 
tyre/road contact patch, making the laterally moving patch polishing the road into lower friction 
for following vehicles. This contact patch distortion also increases the vehicle’s own need for 
road friction and increases its tyre wear [Personal communication with Dr Boris Thorvald, 
Scania Commercial Vehicles AB]. 

Less obvious is that when an axle is exposed to roll vibration, it also yaws. This is analyzed by 
Ahmadian & Ahn (2003) [28]. As a wheel moves upwards and the suspension is momentarily 
compressed, its toe angle changes. This results in a steering response, similar to the driver 
slightly turning the steering wheel. If a steering effect occurs as both wheels go up parallel, the 
phenomenon is called “bump steer”. If it occurs as one wheel rises and the other falls (axle roll), 
it is called “roll steer”. Solid axles generally have zero bump steer. The occurrence of roll steer 
is more or less inevitable, but the degree of severity differs between axle and truck models. 

A soft chassis suspension may result in severe bump steer behaviour, especially by the front 
steering axle. In Australia, this has been identified by McFarlane & Sweatman (2003) [37] as a 
source of poor lane-keeping behaviour on rough road sections. Where the road width is narrow, 
these lateral disturbances may require the driver to increase concentration into a stress level 
significant for driver fatigue. 

Roll vibration also results in significant vehicle fatigue damage, as discussed in a Ph D thesis by 
Bogsjö (2007) [22]. The research reported by Bogsjö is based on a large amount of road condi-
tion data, measured with one of SRA CS Profilographs on a set of roads including Rd 331; the 
road studied in this ROADEX III research task. 
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3.2.7 Final remarks on heavy truck dynamics 
It is well known, even amongst non-specialists, that stiffness and damping are important sus-
pension design parameters. The potential of softer suspensions as a method to reduce cab vi-
bration has been studied by Öijer & Edlund at Volvo 3P [14]. The results show that a very soft 
suspension may reduce cab vibration by some 6 - 20 %, which is a clearly noticeable difference. 
The study also showed that after resurfacing the test road, the cab average vibration was re-
duced by 67 % and its peak vibration by 85 %. 

When heavy trucks are exposed to roll forces at frequencies below some 3 Hz, resonance may 
cause the roll response to be larger than the input. There is a theoretical possibility that the 
truck roll eigenfrequency can be reduced, and thus the entire roll resonance, by designing the 
vehicle with extremely low roll stiffness (by reducing spring vertical stiffness and minimizing lat-
eral separation of left and right springs). However, as illustrated in Figure 15, the interaction be-
tween stiffness and damping also includes a third, and less publicly recognized parameter; 
spring travel (or deflection/displacement). Low roll stiffness brings large roll displacements and 
very poor cornering performance, in terms of a major tendency to rollover in connection with fast 
large lateral manoeuvres such as in the famous “Moose test” (quick lane change). This is of 
course unacceptable from a traffic safety perspective, and therefore not suitable to implement in 
practice [Personal conversation with Dr John Aurell, Volvo 3P]. 

 
Figure 15 The dynamic triangle of stiffness, damping and spring travel [8] 

 

When designing single systems therefore, the vehicle manufacturer must consider the complete 
vehicle performance. Other requirements than vibration environment must also be considered, 
such as commercial aspects, stability, handling and safety. 

The bottom line is:  

If there really would have been any good quick fixes to radically improve truck drivers 
ride vibration environment without sacrificing other important issues like traffic safety, the 
large and skilled engineer teams at Volvo, Scania and other truck manufacturers would 
have implemented them long ago. 
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3.3 RELATING RIDE FORCES TO PAVEMENT PROPERTIES  

This section gives a brief summary on pavement geometry design, required to balance ride 
forces in curves (dynamic equilibrium), and how pavement roughness - as well as bearing ca-
pacity variance - excite heavy truck ride vibration. The texts are inspired by various road design 
manuals and handbooks, such as the AASHO Policy on Road Design [16]. 

3.3.1 Tight curves are hazardous 

Tight curves are typically more hazardous than straight road sections. An example of this is 
seen in the map of hospital reported accidents on the section of Rd 331 shown in Figure 16. 
While the straight sections of the road showed no accidents, the wide curves show some, and 
the tight curves show several accidents. In fact, more accidents happened in the sharp “Roos 
curve” than at the junction with the significantly more trafficked National Highway 87. In the fol-
lowing sections, dynamic imbalance due to incorrectly banked curves is explained as a risk as-
sociated with tight curves. The subject of dynamic equilibrium of cornering forces was initially 
not considered for the project task, but serious findings during the project work made it inevita-
ble to include it into the report. 

 
 
Figure 16 The south exit of Roos curve in Österforsse shows unusually many accidents 
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3.3.1.1 Steady cornering require dynamic equilibrium by correctly banked curves 

This first part of this section analyses the ‘exciting’ lateral force acting on a cornering vehicle. 
Thereafter, the analysis continues with the ‘reaction’ forces needed to keep the vehicle steady in 
the desired curved path. When balancing these forces, the key exciting factors are vehicle (ref-
erence) speed and the road horizontal curvature, whilst the key retaining factors are lateral fric-
tion and pavement superelevation (single sided cross slope in curves).  

At highway speeds on wet road surfaces, road friction is basically a function of pavement Macro 
Texture (MaTx) only. Thus, in slippery conditions, the cornering reaction forces depend totally 
on texture and the pavement superelevation. Under extremely slippery conditions, the lateral 
friction may drop to almost zero. One example is when driving on black ice. In such conditions, 
the only reaction force available to balance the ride is totally related to the pavement superele-
vation/cross slope.  

This section ends by showing how this knowledge is used when designing superelevation in 
curves on new roads, and concludes that this knowledge is not yet sufficiently used in the man-
agement of curves on the existing road network. 

Failure modes in accidents related to curve design and road friction 
De Solminihac et al (2007) [38] have studied accident outcomes in horizontal curves, and have 
seen that light vehicles are more prone to run-off than are trucks, whereas the main failure con-
dition for trucks and SUV’s is roll over.  

Strandberg (1974) [53] related the truck rollover problem to the fact that many heavy vehicle 
combinations have poor rollover (overturning) stability. It is unusual that passenger cars rollover 
at lateral accelerations below 10 m/s2. However, the rollover limit is often less than 3 - 4 m/s2 for 
trucks. A half empty tanker with a bad suspension might roll below 2 m/s2. While passenger cars 
require high friction and extreme skid to rollover, trucks may rollover on slippery surfaces with-
out much warning to the driver. Strandberg also referred to numerous of investigations showing 
that most truck drivers use larger lateral accelerations at low speeds than at high speeds. Two 
of the most efficient truck design improvements to safety are utilizing maximum lateral distance 
between chassis suspension springs and implementing anti-roll bars. Both actions result in 
higher roll stiffness, thereby increasing roll vibration.  

Persson & Strandroth (2005) [39] identified skidding as a common failure mode in lethal crashes 
on Swedish roads. During wintertime, 53 % of the lethal skid accidents occurred on thin and 
very slippery “black ice”. Wide roads with a high standard of winter operations did not feature to 
any extent in skid statistics. Krafft et al (2006) [44] compared Swedish accident outcome for 
cars with and without an antiskid system. They found that antiskid systems reduced the risk of 
accidents involving human injury by over 13 % lower on dry road surfaces. Furthermore, on 
slippery surfaces, antiskid systems reduced the risk by an astonishing minimum of 35 %. This 
shows that the efficiency of antiskid systems as safety equipment is almost as fundamental as 
of a seatbelt. This further confirms skidding as a common and very serious safety risk on icy low 
volume roads in the northern parts of EU. 
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The exciting lateral force 
As described by Newton’s second law of mechanics, cornering vehicles undergo centripetal ac-
celeration acting toward the centre of the curvature. As seen in Formula 2, the associated lat-
eral6 force F is a product of vehicle mass m  [kg] and squared vehicle speed v [m/s], divided by 
the curve radius R [m]. For a vehicle with given reference speed, the lateral force depends only 
of the curve radius. Smaller radii (tighter curves) yield higher lateral forces. For tight curves, 
even a minor increase in radius results in a large decrease of the lateral force.  

R
mF

2*ν
=   

Formula 2, Lateral acceleration force acting on a cornering vehicle 
 

Figure 17 shows the factors influencing the cornering forces acting on a vehicle as described by 
the “Point mass model”, used in road design manuals worldwide. These are the gravitational 
force G [N], the normal force N [N], the lateral force F [N], the side friction (demand) factor fs [-], 
and tangent of the angle α corresponding to pavement superelevation/banking/cross slope [%]. 

The total road grip between tyre and pavement can be divided into a tangential part (braking 
friction, longitudinal direction) and a radial part (side friction, lateral direction). The side friction is 
the part of the total road grip normally utilized when cornering. 

 

Figure 17  Vehicle cornering forces [15] 

                                                 
6 In Figure 17, the centripetal force is substituted by a corresponding centrifugal force in the opposite direction. Even 
though people in a cornering vehicle perceive a “centrifugal force”, it is fictive (not real) on the vehicle. This report 
follows the practice set used in many road design manuals, by referring to the (fictive) centrifugal force, rather than to 
the fundamentally correct centripetal force with opposite direction. 
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The reaction forces needed to balance the ride 
If the lateral force F is not balanced by reaction forces, the vehicle ride will become unstable 
and the risk of a traffic accident (run-off, skidding and rollover) will increase. There are two reac-
tion forces that may balance the lateral force F. One is the horizontal component of the normal 
force; N * sin(α). The other is the horizontal component of the side friction developed between 
the vehicle's tyres and the pavement surface friction force, N * fs * cos (α). This can be ex-
pressed by the equation in Formula 3.  

)cos(**)sin(* αα sfNNF +=  

Formula 3, Lateral equilibrium 
 

After division by cos (α), the equation can be written as Formula 4. 
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Formula 4, Lateral equilibrium (2) 
 

After substitution with N = m * g (g being the gravitation constant) and with F as per Formula 2, 
the equation can be further developed as Formula 5. 
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Formula 5, Lateral equilibrium (3) 

 

After elimination of m and recalling that cos(α) is close to 1 for small angles (from a mathemati-
cal point of view, pavement cross slopes are small angles), the equation is, with good approxi-
mation, finally expressed as Formula 6. 
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Formula 6, Lateral equilibrium (final expression) 

 

This shows that a steady cornering is totally depending on the sum of the cross slope (banking) 
and the side friction factor. The correct application of banking reduces the need for side friction; 
while incorrect banking may instead increase the need for side friction.  
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Figure 18 shows the ‘demand’ side, the left hand side, of Formula 6 as a linear function of lat-
eral force (Curvature7) for speeds of 30 to 110 km/h. A similar graph as function of curve radius 
is shown in Figure 19. These graphs show that slippery surfaces in very tight curves (R < 200 to 
300 m) may be a challenge at low speed levels of 30 to 50 km/h also.  

In very slippery conditions, when friction approaches zero, a cornering vehicle must be retained 
by another force other than friction. As seen in the right side of Formula 6, the only retaining fac-
tor beside friction is banking. Banking can be designed up to 5.5 % in Sweden. As friction gets 
low, this banking can also be decisive for safe cornering in flatter curves as can be seen by the 
demand values in Figure 19. Conditions that create slippery roads when cornering at highway 
speeds include black8 ice, bleeding asphalt, surface contamination such as mud and sand, as 
well as driving with threadbare slick-worn tyres on a wet road surface. 
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Figure 18 Demanded sum of superelevation and side friction to balance the cornering force 

 
                                                 

7 Curvature is defined as 1000/R, thus being directly proportional to the exciting lateral force as seen in Formula 2. 
Curvature also has another advantage over radius, when analyzing and reporting road alignment data. While straight 
sections make the radius approach +/- infinity (which is difficult to plot in a linear scale), curvature approaches 0 and 
is easy to plot. This is fundamental to plots as in Figure 71. 
8 Black ice, also known as "glare ice" or "clear ice," typically refers to a thin coating of glazed ice on a surface, often a 
roadway. While not truly black, it is transparent, allowing the usually-black asphalt/macadam roadway to be seen 
through it, hence the term. It is unusually slick compared to other forms of ice on roadways. It often has a matte ap-
pearance rather than the expected gloss; and often is interleaved with wet pavement, which may be identical in ap-
pearance. For this reason it is especially hazardous when driving or walking because it is both hard to see and ex-
tremely slick. [Source: Wikipedia, encyclopedia on Internet] 
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Figure 19 Demanded sum of superelevation and side friction to balance the cornering force 

 

Braking tests may not always correctly reproduce what can happen in practice. Even though 
adequate friction numbers are recorded in tests, cornering in under-banked curves may still end 
in run-off accidents under certain winter conditions. This can occur on a snow layer. Under test 
conditions a test tyre may be able to penetrate the snow during intensive braking, and find grip 
in the underlying asphalt. In practice however this may not happen as the (lower) cornering 
forces may be insufficient to penetrate the slippery snow layer. Under these conditions, correct 
banking may be the only safeguard for safe cornering. 



 Page 39  

 

ROADEX III The Northern Periphery Research 

Designing superelevation in curves on new road sections 
The side friction factor needed to balance the lateral force in poorly banked curves can be com-
pared with the side friction factor used for design purpose (set by the road agency). In order to 
maintain a safe margin with respect to the inevitable temporary low friction conditions such as 
due to snow, ice, water, bleeding asphalt and poorer than average tyres, the factor used in de-
sign must be substantially lower than the demand friction factor. The side friction factor used in 
Sweden for superelevation design purpose is given by Formula 7. It is also shown in Figure 20. 

ν*6.3*0096.0
dim, *28.0 −= efs   

Formula 7, Side friction design factor in Sweden [15] 
 

where 

fs, dim = side friction factor used for design [-] 
e  = the natural logarithm [-] 
v  = design speed [m/s] 
 

 

Figure 20 Swedish design values for total friction, brake friction and side friction [15] 

 

The side friction factor used in Sweden for road design corresponds to approximately 2/3 of 
measured friction between good car tyres and wet asphalt pavements in good condition. Gilles-
pie (1992) [7] reports that truck tyres generally exhibit lower friction values than cars, because of 
higher unit loading in the contact patch and different tread rubber compounds. 

After applying the design factor, standard sheets with ideal superelevation values can be calcu-
lated for each speed limit level. The sheet for 90 km/h is given as an example in Figure 21. 
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Figure 21 Ideal ratios for superelevation at 90 km/h, as function of horizontal radius [15] 

 

As mentioned above, superelevation design is based on analysis of the forces acting on a point-
mass model. This analysis assumes that the driver will follow a perfect curved path at the de-
sign speed. This assumption can however be far from real world conditions. For example, the 
path travelled in practice often includes transient curvatures (and thus lateral forces) much 
higher than assumed, such as when changing lane when overtaking another vehicle, yawing to 
compensate for wind bursts, or yawing to avoid road damages such as potholes.  

There is, as already stated, a margin between the side friction demand factor and the design 
side friction factor, but the increased accident rate experienced at many sharp curves, such as 
on the new expressway between Falun and Borlänge in Sweden, questions whether the current 
margin is large enough. It is possible that the deviations between the design model assumptions 
and the real world conditions, as described above, are too large to be covered by the existing 
margin. If so, the design of reversed superelevation, as currently allowed as per note 2 in Figure 
21, should be reviewed. 
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Maximum values of cross slope and banking/superelevation 
For snow and ice contamination, superelevation should not exceed a slope on which vehicles 
standing or driving slowly would slide toward the centre of the curve. In Norway, the maximum 
allowed value for banking in existing hairpin curves is 9.5 % [41], see Figure 22. Sliding in a 
section with 9.5 % banking may happen when the side friction factor is below 0.095 (9.5 %). 
However, the consequences of a slip incident at low speed are likely to be milder than those of 
skidding in high speed due to too low banking of a hairpin curve. 

 
Figure 22 Guidelines for maintenance of banking in existing curves in Norway 

 

Up until now, there has been an absence of a national guideline for superelevation on existing 
roads in Sweden. For the design of new curves in new road sections, the maximum value is 5.5 
% [15] (plus a construction tolerance of some 0.5 % [40]). This conservative Swedish road de-
sign code is however irrelevant for hairpin curves, which are inevitable in the mountainous roads 
in Norway. Very sharp curves also exist on old roads in Sweden however, and they often have 
much higher banking than 5.5 %. Values of more than 10 % are surprisingly common. 

When slowly driving in a curve with higher-than-needed superelevation, the vehicle follows the 
desired path only when the driver steers up the slope. Since steering against the direction of the 
horizontal curve is unnatural to a driver, such curves may be perceived as “difficult” or uncom-
fortable.  

When trucks and SUV’s with high centres of gravity and a soft suspension travel slowly on steep 
cross slopes, a large share of their weight is distributed to the down-slope tyres. If this condition 
becomes extreme, the vehicle may easily rollover as discussed by Strandberg (1974) [53]. 
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Poor control of superelevation in existing curves 

It appears that accumulated research and experience has resulted in reasonable design values 
for banking/superelevation in new curves. However, much less effort has been spent on how to 
manage existing curves.  

The side friction factor used for design cannot be used to define a sharp limit between safe and 
unsafe existing roads. It can however be used to evaluate existing horizontal curve geometry 
(radius and banking/superelevation) against the very same “highest acceptable risk level” as 
applied when designing new road network sections, by using Formula 6. 

As described above, the design of superelevation in new curves is based on analysis of the 
forces acting on a point-mass model. This analysis assumes that the driver will traverse a per-
fect curved path at the design speed. For existing curves on old roads, this assumption can be 
very unrealistic. Comprehensive surveys show that on low volume roads, operating speeds of-
ten exceed the design speed, see de Solminihac et al (2007) [38]. This is an undesired but hard 
fact that road managers must deal with, and not ignore. Furthermore, the geometric characteris-
tics of old curves can seldom be described by simple parameters such as a single radius value, 
since the alignment can be so poor that the curvature (and thus the lateral force) varies signifi-
cantly. One such example was found in Profilograph data from a Swedish National Highway, 
where 20 skid accidents took place in a 200 m long section of a curve, during the winter 
2006/2007. On investigation, it was found that the curvature (lateral force) was doubled within 
fractions of a second just at the multi-crash length. 

With the wide variance of real vehicle speeds in curves, there is always an unbalanced force 
whether the curve is superelevated or not. As discussed in the AASHO Policy on Road Design 
[16] unbalanced force results in tyre wall thrust, which is taken up by the friction between the 
tyres and the road surface. This reaction force is developed by distorting the contact area of the 
tyre. Keeping this distortion low, keeps the road surface from polishing and tyre wear low. These 
are further reasons to control and correct superelevation in existing curves. 



 Page 43  

 

ROADEX III The Northern Periphery Research 

3.3.1.2 Road factors decisive for road grip and stability on straight roads 

Hydroplaning by highway vehicles is a phenomenon characterized by a complete loss of direc-
tional control. When a tyre is moving fast enough, it rides up on a film of water and thereby 
loses contact with the pavement. Although many vehicle, pavement and environmental factors 
affect the risk of hydroplaning, a rule by thumb is that hydroplaning can be expected for speeds 
above 70 km/h where water ponds to a depth of 4 mm or greater over a distance of 10 m or 
greater. Thereby, Glennon (2004) [42] states that “hydroplaning is a function of water depth and 
length of the drainage flow path”. 

Gallaway & Rose (1971) [25] found that the pavement water depth (above the road surface tex-
ture tops) can be calculated from: 

• rainfall intensity,  
• cross slope,  
• length of the drainage flow path, and  
• texture depth. 

In addition, they defined the length of the drainage flow path as a function of: 

• pavement width,  
• cross slope/superelevation, and  
• longitudinal gradient. 

Pavement depressions (unevenness and rutting9) make water ponding worse, while horizontal 
curvature increase the exciting lateral force and thereby the demand for lateral friction. This 
raises the risk of skidding. 

Both of the lists above include cross slope as a key factor for hydroplaning. Despite this, many 
road agencies do not analyze cross slopes in their road network on a routine basis!  

Some 535 Swedish hydroplaning accidents have been analyzed at the macro level [31]. The 
results show that where cross slopes are too low, the risk of hydroplaning more than doubles; 
from about 26 to 54 per Mapkm10. Due to uncertainty in the position of the accident sites, the 
analysis was made using average values over as much as 500 m. This suppresses the influ-
ence of local damage on the road. If the analysis could have been carried out over shorter aver-
age lengths, i e 50 m, it is likely that even larger increases in risk could have been identified, as 
cross slopes become too low. 

The design value used in Sweden for cross slopes on new straight sections is -2.5 % on roads 
with hot mix pavements, and -3 % on pavements with surface dressing as the only bound layer 

                                                 
9 In the EU Northern Periphery, rutting is not only caused by compaction of the pavement, but also by surface 
abrasion due to the use of studded tyres in the winter. One exception is the Highlands of Scotland, where studded 
tyres are not common and surface friction has instead been handled by using surface dressing pavements. 
10 The unit Mapkm (million axlepairkilometer) describes traffic work. 
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[40]. These design values for new roads have been set with an allowance for future settlements. 
When repaving old roads, where settlements are likely to have stopped, a slightly smaller CS of 
-2 % may be a beneficial target. A CS of -2 % is sufficient for a good water flow, and makes 
driving in windy conditions easier. Occupants can also sit more upright and comfortable than 
with larger cross slope. These latter aspects are especially important in providing a sound work 
environment for professional drivers. 

3.3.2 Relating poor ride to pavement condition 

This section starts with a short review of opinions of EU Northern Periphery road users. Then it 
describes how ride vibration is affected by many factors, such as road conditions, vehicle prop-
erties and driving behaviour (including driving speed). Of these, road condition is by far the most 
decisive for in-vehicle vibration. Various types of road defects cause various ride vibration prob-
lems. Examples of these are long wave unevenness, undesired cross slope variance, rough-
ness, megatexture, potholes and other local damages, particularly deflection variance in weak 
pavements under heavy vehicles as shown by Granlund et al (2005) [9]. The section ends with 
a description of how to measure ride quality on dirt roads. 

3.3.2.1 EU NP professional road users perspective on ride conditions 

Opinions of professional road users on road service levels in test areas across the EU Northern 
Periphery was mapped by Saarenketo & Saari (2004) [49] in the ROADEX II Project. 330 ques-
tionnaires were issued, and with a satisfying response rate of 45 % the result was 147 answers. 
The answers showed that roughness was a major problem for the forest industry; 70 % of tim-
ber transporters stated that uneven roads were their main problem. Also over 50 % of respon-
dents in the construction and public industries suffered from severe problems due to roughness. 
Truck drivers stated that the worst sections had bumps at culverts, located at the bottom of a 
valley with steep hills adjacent to the low point culvert. This situation required them to slow their 
truck down to almost zero, in order to prevent vibration damage, and once the bump was 
crossed, it did not have enough momentum to climb the next gradient. The drivers also reported 
much higher fuel consumption on rough roads. Many problems were reported to be related to 
weak pavement shoulders, poor road alignment and poor bearing capacity. A significant share 
of the drivers gave poor traffic safety ratings, due to factors such as poor winter condition (main-
tenance), bad cross slope, uneven frost heave bumps, poor road alignment and lack of crash 
barriers in curves on high embankments.  

The truck drivers questioned also reported continual stress when driving on some long routes 
(including National Highways) that the road agency believed to be in good condition for driving. 
This happened when unexpected poor road conditions made the perceived maximum safe 
speed drop far below the planned speed. The result was a conflict within the driver, between 
making a delayed delivery and causing a major traffic safety risk. Such a conflict caused high 
stress to the truck driver. Typical sources of this kind of problem are frost related roughness and 
delayed snow removal. The latter allows snow to be compacted and leads to the development 
of deep tracks and ruts. Wet snow freezes into ice in the lanes and these ice ruts then remain 
for a long time. This type of slippery rut can be difficult to remove with a truck mounted snow 
plough and typically they must be scraped off (costly) with a slow-moving heavy grader. Severe 
cases may even require many repeated runs with the grader. 
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3.3.2.2 Roll vibration is excited by undesired variance of Rut Bottom Cross Slope  

The Swedish Road Administration has been laser-scanning the surface condition of their road 
network since the 1980’s and importing the data into the SRA Pavement Management System 
(PMS). On-going evaluations by Johan Lang of SRA show that the average condition of rutting 
and roughness on the Swedish highway road network is quite constant, despite gradually 
increased intervals between repaving actions and large yearly increases in traffic. One reason 
for this important success is the increasingly systematic use of laser-scanned condition data by 
the local pavement engineers [Personal communication with Mats Wendel, SRA Head Office].  

The condition parameters most commonly used in PMS so far, are Rut Depth and International 
Roughness Index (IRI). These parameters do not work well on road sections with edge dam-
ages although these can cause excessive roll motion to high (heavy) vehicles. Therefore, the 
SRA Central Region has in the strategic regional plan for 2004 - 2015 pointed out an urgent 
need for a “Roll vibration indicator” as a new pavement condition parameter [20]. 

At the national level, the SRA’s action plan for traffic safety 2004 - 2015 has identified that 
“Pavement edge deformations are perceived as very uncomfortable by all road user groups, es-
pecially drivers of (high) heavy trucks” [23]. This confirms the need of a pavement condition pa-
rameter to address this kind of distress properly. 

A potentially suitable roll vibration indicator has been defined “down under”. As reported by 
Bowler et al (2001) [45], Transit New Zealand (TNZ) has carried out excellent customer focused 
work in the award winning Truck Ride Improvement Initiative. This included a two-stage re-
search process that started with a programme of qualitative research that looked at the specific 
concerns of truck drivers. This was followed by a second research stage where the truck drivers 
were asked to quantify their concerns. The results of the first stage were used build a list of 
concerns that were prioritised by the drivers. Before the final ranking, the truck drivers were in-
formed on the relative costs for each type of improvement. 

After some adjustments for willingness to pay, the 300 truck drivers’ top priorities were: 

1. Build more passing lanes. 
2. Repair surface undulations and settlements. 
3. Straighten out too sharp corners. 
4. Repair incorrectly banked corners. 
5. Improve road alignment and evenness at bridges; i. e. repair settlement on the 

approaches to bridges. 
6. Build wider shoulders. 
7. Correct vertical alignments; take away dips and rises which block visibility. 
8. Build wider bridges. 
9. Build longer passing lanes. 

Findings from the TNZ “market investigation” was then used in a technological project, defining 
how to detect road sections where unevenness significantly impacted on truck ride and han-
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dling. Cenek et al (2003) [43] presented this project, where the focus included long wave undu-
lations and roll caused by roughness warping between wheel-paths. The outcome is that TNZ 
now has an awareness of the need to focus on those sections of the highway network that are 
of priority to truckers, and on the repair of these. The results also provided justification for ques-
tioning current road management practices and funding allocations, which are not delivering the 
types of state highway improvements that professional customers require. TNZ found that cab 
body roll, particularly when combined with cab body pitch, was of most concern to occupants of 
trucks. This is an important finding, as existing road roughness parameters used for pavement 
management purposes (i e IRI) have their emphasis on vertical vibration, not on rotation. The 
threshold value for uncomfortable truck ride, related to rotational response (pitch and roll), was 
found to be 4.0 to 4.5 °/s. A complex Truck Ride Index was developed from this. It is based on 
existing 20 m average values of cross slope, curvature and other parameters available in TNZ’s 
pavement management system. Since 2001, Transit New Zealand has been given an additional 
road funding of NZ$3 million annually that has been specifically allocated to the repair of critical 
sections for truck ride. 

In 2004, the SRA tested the truck cab roll component from TNZ’s complex Truck Ride Index us-
ing data from road Y 953 in the SRA Central Region. The results were disappointing however. 
The potential roll vibration indicator gave much higher alarms at entrances and exits of normal 
left hand curves, than at critical sections with severe edge deformations and roll problems. This 
was seen as a defect in the system, since it could lead to a waste of road repair funding. At a 
result of this, SRA decided to define a new roll vibration indicator in-house. The new indicator is 
based on road profile data, laser scanned at 16 kHz in the bottom of the truck wheel paths (left 
and right) and reported in steps no longer than 1 m. This revised indicator offers 20 times better 
spatial resolution than the TNZ roll indicator. From the data recovered, the Rut Bottom Cross 
Slope (RBCS) is calculated. At this point a crucial filtering procedure is applied, to remove the 
very long wave slope variances that relate to superelevation change at curve transitions. This is 
markedly notable at left11 hand curves. Depending on road section width and reference speed, 
such desired change in cross slope takes place over some 40 - 200 m. These transitions 
smoothly tilt the truck cab roll angle from one side to the other without producing roll-mode vi-
bration. The vital filter is calibrated with the road’s reference speed, thereby normalizing the fil-
tering to typical heavy truck roll vibration eigenfrequencies. In the next step, undesired vari-
ances in the RBCS are calculated. This is done in two parallel runs. One run calculates the vari-
ance over “short sections”, addressing the excitation of the axle roll of the truck wheel. The 
other run calculates the variance over “long sections”, addressing the excitation of the truck 
chassis/cab roll. Finally, the maximum of these two variances is reported as the undesired vari-
ance of RBCS. See Granlund (2006) [21] for details. 

One of the three goals in the present ROADEX III project research task, is to draft a limit for the 
new “undesired Rut Bottom Cross Slope Variance” parameter defined at SRA. Should the limit 
be 0.25 %, 0.50 % or what? Should there be different values in curved vs. straight sections, in 
long curves vs. short curves, and in wide vs. narrow sections? 

                                                 
11 In the UK and other countries with left hand traffic, this applies to right hand curves instead. 
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3.3.2.3 Frost related bumps and potholes are worst 

The ROADEX II professional road user interviews [49] showed that uneven frost bumps and 
potholes were considered to be some the worst damage types on paved roads. These short and 
high/deep local damages can cause mechanical shock that can result in damage to vehicle, 
cargo and/or vehicle occupants. As can be seen in the following clause, the traditional use of 
long report intervals is one of the main reasons why road agencies have not be able to focus on 
local damages, despite using sophisticated laser/inertial profilometers. 

3.3.2.4 Road condition data must be analyzed over relevant report intervals 

An important issue when discussing road condition in relation to drive comfort as well as health 
and safety, are the properties of the used road statistics used; i e the report interval. By 
tradition, rutting and roughness values have been described as mean values over long sections 
such as 20 m, 100 m, 400 m, 1000 m, whole roads or even whole road networks.  

Since roughness is defined as a deviation from a planar surface, it is of course less relevant to 
analyze the mean value, than some kind of estimate of the worst deviations. Figure 23 shows 
values from a variety of report intervals, ranging from 1 dm to 400 m, from an analysis of a very 
rough road in the SRA Northern Region. The result shows that local bumps were 20 - 30 times 
worse than the average IRI value of 3.8 mm/m, giving peak IRI-values of 80 - 130 mm/m. This is 
comparable to, or actually worse than, many 10 cm high traffic calming speed bumps on urban 
streets. At the worst sections of this 90 km/h road, heavy trucks almost bounce off the road at 
speeds over 30 km/h. Despite this, roads with IRI lower than 4 mm/m are not reported in the 
SRA annual report as a severe problem. This is may be true for roads with low roughness vari-
ance, but definitely not for roads with severe local damages with IRI > 80 mm/m! 
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As illustrated above in Figure 23, roughness variance is extremely high at local bumps. Thus 
averaging over distances much longer than the bump itself (often about 1 m), such as with IRI20 
or IRI100, disguises the variance. This averaging eliminates the ability to identify those bumpy 
sections that heavy vehicle operators consider intolerable. A better parameter could be the 95’th 
percentile, such as is used when mapping vibration emission from roads and railways to nearby 
dwellings. Another option could be to report a parameter related to the variance in data, 
together with a mean value. By reporting the mean value, together with the “two sigma” limit 
(corresponding to the 95’th percentile), a better picture is given of the worst sections. 

3.3.2.5 Heavy vehicles suffer from soft spots in weak pavements 

Heavy vehicles perceive not only the static surface roughness, but also a dynamic roughness 
component when the pavement has “soft spots”. Pavement deflection is typically less than two 
millimetres under a moving heavy vehicle. This magnitude seems negligible, being comparable 
with road wearing course texture. The texture however, is smoothened by the tyre’s “enveloping 
effect”. Ride comfort is associated with vibration acceleration and vibration velocity, rather than 
vibration displacement. (This makes sense; otherwise a stiff sports car would be considered 
more comfortable than a soft luxury car when riding on bumpy roads). Vehicle vertical vibration 
acceleration is associated with road roughness profile slope variance, rather than roughness 
profile height. So, even if a pavement deflection under heavy vehicles, with few exceptions, 
would not be larger than about one or two millimetres, significant vehicle vibration acceleration 
could occur at soft spots where the deflection profile varies rapidly in terms of large slope vari-
ance. The importance of soft spots is confirmed by the Australian coal mining industry, where 
they are recognized by handbook Bad Vibrations [50] as an important source of ride vibration in 
transport vehicles. 

Ahlin et al (2000) [3] made an unexpected observation when comparing road roughness with 
ride vibration in ambulances and heavy trucks. When surface roughness drops to zero, signifi-
cant seat vibration remains in heavy trucks while vibration drops to almost zero in ambulance 
cars. In the trucks, the threshold of the weighted vibration acceleration was found to be as high 
as 0.2 m/s2 rms. This value is to be compared with the Action Value of 0.5 m/s2 rms over 8 
hours, stated in directive 2002/44/EC. Clearly, other factors other than road surface roughness 
can bring as much as 0.2/0.5 = 40 % of the allowed truck seat vibration. Soft spots in the pave-
ment are believed to be a causal factor behind such vibration; Forssén (2001) [10] discusses 
road deflection variance as an important but hard-to-grip property. Granlund et al (2005) [9] 
measured and compared truck wheel vibration with theoretical wheel vibration calculated from 
road surface roughness (assuming a perfectly stiff road profile) on 80 km of roads in Sweden. 
The hypothesis was that large differences between measured and calculated vibration indicates 
possible soft spot locations along the road. The study found a correlation between soft spot in-
dications recorded in the truck and reference data on pavement bearing capacity properties, 
such as subgrade stiffness module, pavement thickness, frost fatigue damage, and overall bear-
ing capacity index. These findings give further support to the theory that significant amounts of 
heavy vehicle vibration arise from soft spots in weak pavements. 
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3.3.2.6 Measuring ride quality on very low volume dirt roads and winter roads 

Many road agencies measure the condition of paved roads with laser12/inertial profilometers, as 
with the Profilograph used in the case study of this project. The advanced and expensive 
Profilograph can report a wide variety of condition parameters, including longitudinal roughness 
in terms of IRI-value and other indices, such as rutting, cross slope and texture. Very low 
volume roads do not however require such demanding accuracy and can be measured with 
cheaper instruments. It may in fact be impossible to make relevant condition measurements 
with a laser/inertial profilometer on very poor condition dirt roads or icy winter roads. 

A relatively cheap measurement method available is to ask road users about their perceived 
ride quality; the so-called “no cost instrument”. By using a comfort scale, such as in Table 1, 
“backwards”, it is possible to estimate the vibration intensity and use it as a condition rating. An 
obvious problem however is how to distinguish between transient shock at bumps and average 
vibration by roughness. 

A somewhat more expensive system can be based on vehicle seat mounted vibration sensors; 
the “medium cost instrument”. Two examples are the CVK Health Vib (see Figure 24) and the 
Bruel & Kjaer Human Vibration Measurement Kit (see Figure 25). A more advanced state-of-
the-art example is the Dewetron Stream Machine, used in the case study and presented later in 
this report. The price of such instruments ranges from a few thousand €, up to some thirty thou-
sand €. Then there are costs of extra sensors such as odometer, GPS, video and others. There 
have been experiments trying to measure road condition with accelerometers that have been 
mounted to wheel axles. One obvious drawback is that such a system does not yield results 
comparable with either the ISO 2631 comfort scale, or the EU Action Value for professional 
drivers WBV exposure. 

Using a cheap instrument however is no guarantee of a cheap measurement. A full 
measurement process includes activities such as data collection, transfer, storage, backup, 
analysis, quality control and distribution to users. There are also costs for client system 
infrastructure, user education, and much more. So a low total cost may depend more on smart 
purchase behaviour, than on cheap sampling with low precision (subjective comfort rating) and 
limited outcome. 

“Cheap” sampling can have drawbacks for road managers, particularly those who purchase 
road maintenance based on road condition. If road users start to give biased ratings in order to 
achieve “above standard” conditions, such measurements may become very expensive in a 
road maintenance contract context. Alternatively, if the vast majority road users see a particular 
bump and always brake for it, the vibration will be reduced and an on-board logger will not 
trigger an alarm. In this case the bump will not be repaired. Such bumps however may come as 
a hazardous surprise to foreign road users not familiar with the road.  

                                                 
12 The sensor recording the height above the pavement may be of another type other than a laser sensor; i e an ul-
trasonic sensor. However, laser sensors have proved to be able to better fulfil the high accuracy and high environ-
ment demands associated with road profiling. A current trend in the road profiling industry is to scrap cheaper sen-
sors and replace them with rugged “road edition” laser sensors. 
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Figure 24 The CVK Health Vib system 

 

 

Figure 25 Brűel & Kjaer Human Vibration Measurement Kit 4447 
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Chapter 4. Case study on the Beaver Road 331 

 

 
Figure 26 The southern entrance to the Beaver Road 331 
 

Rd 331 is a 170 km long regional route in Sweden, connecting the rural forest area in eastern 
Jämtland County and western Västernorrland, with the heavily industrialized coast at the east of 
Västernorrland County as seen on the map in Figure 27. 

Rd 331’s Annual Average Day Traffic (AADT) ranges from 350 to 2000 vehicles per day.  

Rd 331 is a main supply road for timber transports servicing the paper mills in the Sundsvall 
area, such as SCA’s factories in Tunadal, Östrand and Ortviken. Thus, the share of heavy 
trucks is very high, from 12 to 19 %. Most of the trucks have three axles and a trailer; the 
average number of axles per recorded truck is as high as 4.8. The timber transports on Rd 331 
are also expected to increase by another 150 000 m3/year. This is due to a redirection of timber 
from the Sollefteå area, which up until now has been transported to Utansjö Bruk (being shut 
down), north of Härnösand.  
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Figure 27 Swedish Beaver Road 331 connects the forest area with the industrialized coast  
 

Connecting National Highway 87 in Viksmon to the Coast, Rd 331 also is a link on the 
ambulance route between the local hospital in Sollefteå and the region hospital in Sundsvall. 
Among the most sick or severely injured patients, some are in need of specialized care not 
available in Sollefteå. These patients, often very vulnerable, are transported on this road to 
Sundsvall.  
The speed limit alternates between 90 and 70 km/h, with a drop to 50 km/h in some villages.  

Rd 331 is considered a normal road, while SRA have thousands of kilometres of roads in similar 
condition and use. Therefore results of this case study are therefore not unique, but relevant to 
a large proportion of the road network. 

In the SRA Road Data Bank (RDB), Rd 331 starts at the Coast and its distance is measured 
towards Jämtland. In this study, however, most of the analyses have been made in the direction 
of the timber transportation. This direction is opposed to the RDB distance direction. For this 
reason, most of the data graphs presented have the distance markings in the reverse direction. 

Rd 331 suffers from many and severe traffic accidents. In 2005, seven people were killed in 
road traffic accidents on the road network in Västernorrland County. Three of them died on Rd 
331. A map over police reported serious accident black spots on Rd 331 is showed in Figure 28. 
The site with highest accident rate in Västernorrland County is the Hazardous Site Stavreviken, 
“HS Stavreviken”, at the southern exit of Rd 331. The map has been created by Hans Johans-
son, traffic safety officer at SRA Central Region. 
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Figure 28 Accident black spots at the Beaver Road 331, not normalized to AADT (Individual Risk) 
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4.1 TRUCK TEST PARTNER - BRORSSONS ÅKERI AB 
Brorssons Åkeri AB was founded in the mid 1940’s, at the end of World War II. During the eras 
of water power plant construction from 1940 to 1960, the company was heavily employed trans-
porting soil, gravel and other material to the construction sites. After the end of the era, the 
transport markets changed and for the last twenty years timber logging has been Brorssons’ 
core business.  

The company operates 14 timber logging trucks, each with a large trailer. The trucks are loaded 
by separate cranes (see Figure 29), to minimize the dead weight of the vehicle and maximize 
payload. Each truck runs Monday to Friday in two shifts resulting in 18 hours per day. On Fri-
days, only an 8 hour shift is used. Normally each truck daily drives 4 round trips of some 2 x 140 
km on the Beaver Road 331, depending on which forest the timber is to be picked up from. The 
annual mileage per truck is 200 000 km. All trucks and trailers are exchanged at 3 to 4 years of 
age.  

 

 
Figure 29 Logging timber from forest to the coastal industries  
 

The company’s vehicles are seldom involved in traffic accidents, other than some low speed 
trailer incidents on narrow, steep and slippery forest roads. As a result, the company has a 
modest insurance cost for the truck fleet. However, the drivers are very uncomfortable with 
seeing foreign road users suffer from accidents at “Hazardous Sites”. The drivers think that 
many of these accidents could have been prevented. The drivers have requested road 
improvements including increased width of the narrow, high and steep road banking from 
Viksmon to Stavre, straightening the Roos Curve and some other sharp curves, repair of 
incorrectly banked curves, repair of edge deformations and bumps at culverts, more frequent 
and higher quality resurfacing, and intensified winter road maintenance such as frequent 
removal of ice-ruts with a heavy grader. These requests have been raised by professional 
drivers riding an astonishing total of 2 800 000 vehicle km/year on Rd 331.  
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4.2 A SCANIA R480 164 G 6X4 WAS USED AS TEST TRUCK 

The test truck (licence registration number WPT 493) was three years old, and had a mileage of 
609 000 km. The instrumentation was carried out on Sunday 26th of August, 2007. 

 

Figure 30 A damper bush was broken, but this was not perceived under normal driving 

 

When demounting one of the truck’s front wheels, see Figure 30, it was found that the damper 
bush was broken. None of the two experienced professional drivers, Mats Jonsson and Anders 
Larsson, had noticed anything unusual during their daily driving work. The truck had been at the 
Scania Workshop for service just the week before and had to be driven back for the necessary 
repair work on Monday morning, before the ROADEX main test. Measurements were carried 
out on this journey for reference purposes only.  

The gross vehicle weight of the test vehicle combination was 60 tonnes with a full payload. The 
dead weight was some 19 tonnes. Measurements were taken under normal working conditions; 
hauling timber from the forest to the coast, and then driving back unloaded. If nothing else is 
stated, the data in the graphs presented are recorded with the vehicle combination fully loaded 
and travelling to the coast. 

The drivers were instructed to drive as they would normally do, with one exception. They were 
asked to remain in the wheel tracks, and not to avoid driving over local road damages. (In 
normal driving, they can avoid some bumps unless there are oncoming or overtaking vehicles).  
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4.3 TEN ROUNDTRIPS OF 280 KM WERE RECORDED 

  

A total of ten 2 x 140 = 280 km round trips from the Ramsele forests to the coast were recorded, 
in order to investigate the precision in truck ride measurements. One trip also included the most 
northwest 30 km section from Backe to Ramsele. 

The round trips were carried out from Monday 27th to Thursday 30th of August 2007. Many of the 
measurement trips were undertaken in rainy weather and on wet roads. 

Driving a timber logging truck is extremely busy. In the forests, the truck drivers get a short 
break while the timber is loaded by a large separate crane as seen in Figure 29. At the coastal 
delivery points, there are almost no natural pauses at all. The huge Svetruck log stackers with 
their 8.2 m2 grapple need only single grips to unload each of the three timber piles on the truck 
and trailer combination. The driving shifts change at 14.00. This is done without even a few 
minutes common break for a cup of coffee together.  

The detailed analysis focused on a series of Hazardous Sites (HS) identified from truck driver 
interviews, from pavement condition data and from crash statistics in the Swedish national road 
traffic accident database STRADA. 
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4.4 COMPREHENSIVE RIDE AND ROAD CONDITION MEASUREMENTS 

 

4.4.1 Truck ride measured by accelerometers and a combined GPS/inertial unit 
Truck ride vibration was measured with a Dewetron Stream Machine system, owned by SRA 
Consulting Services (SRA CS). This system carries out real time calculations of health risk, as 
defined in the recent ISO 2631-5 (2004) standard [5]. The system, and the connected acceler-
ometers, satisfies the comprehensive accuracy demands set out in the EN ISO 8041 instrumen-
tation standard [17]. The accelerometers were located at several points of the truck to record 
motion in multiple directions (see Figure 31 for definitions and Figure 32 for photos of mount-
ing): 

• Left and right front axles, z-axis, 5 kHz 
• Left and right side of the frame, above the front axle, z-axis, 5 kHz 
• The pan of the air-suspended drivers seat, xyz-axes, 5 kHz 

Both drivers weighed around 90 kg. 
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Figure 31 Basicentric axes of the human body in seated position [18] 
 

 
Figure 32 Left: Accelerometers at axle and frame, Right: Seat pad with 3-axis sensor 
 

The vehicle speed during the tests was recorded with a GPS/inertial unit, updating speed values 
at 100 Hz. This corresponds to measuring every second dm of the ride at 80 km/h. This data 
was also used to calculate the distance position with a fair accuracy.  

A digital video camera recorded front view “Right-Of-Way” (ROW) from the truck cab. Noise < 5 
kHz was recorded with a microphone.  
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One of the main tasks of the test was to study roll vibration of the truck cab. For this purpose, an 
OxTS RT 3050 100 Hz GPS/inertial unit was used, see Figure 33. This unit recorded the motion 
of the cab in all 6 axes; xyz translation, as well as rotation in yaw, roll and pitch. The accuracy 
and resolution was so good, that the system was able to pick up a change in elevation of 1 mm 
between the left and right truck tyres road contact patch. The RT 3050 was mounted on a car-
bon-reinforced RT Strut, with very high torsion stiffness, seen in Figure 34. 

 

 

Figure 33 The OxTS RT3050 GPS/Inertial unit, used for 6-axis ride measurement 
 

 
 
Figure 34 The RT 3050 mounted on a RT Strut in the truck cab 
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4.4.2 Passenger car ride measurement 
For reference purpose, vibration was also measured on the driver seat in the new Ford Mondeo 
passenger car seen in Figure 35. The driver’s weight was about 90 kg. The car was driven just 
below the speed limit, with a minimum of speed variance. 

 

Figure 35 Reference driver seat vibration measurements in a new Ford Mondeo 
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4.4.3 Laser/inertial reference measurement of pavement condition 

 

In this case study, the road alignment, the 3-D geometry of the pavement lanes and the surface 
texture of the road were scanned with one of SRA CS’s advanced laser/inertial Profilographs, as 
shown in Figure 36. These Profilographs are used for routine survey of the condition of paved 
public roads, airfields, test tracks et cetera. The resolution of the system is 0.1 mm (texture 0.01 
mm). The accuracy expressed in terms of precision and trueness, is within fractions of a milli-
metre under normal operation conditions, as certified by third party. The Profilograph allows ac-
curate inertial compensated measurements to be gathered whilst driving at speeds up to 165 
km/h, although speeds of 15 to 90 km/h are more normally used in highway surveys. 

 

Figure 36 SRA CS�s laser/inertial Profilograph P45 [Photo: Mats Landerberg] 
 

The Profilograph is equipped with a 2.5 m wide rut bar, as seen in Figure 37. The rut bar is 
equipped with 16 kHz lasers scanning the road surface’s shape relative to a large scale inertial 
plane. The two outermost lasers on each side are angled outwards, giving rise to a total 
scanned lane width of 3.2 m. Three of the lasers sample at 64 kHz, taking accurate measure-
ments of the road surface texture. One scans the left wheel path, one the right, while the last 
texture laser scans between the wheel paths. 
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Figure 37 The Profilograph with its 2.5 m wide rut bar, scanning a 3.2 m wide lane cross section 
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Chapter 5. Expected results are confirmed 
5.1 UNACCEPTABLY HIGH WHOLE-BODY VIBRATION AND SHOCK 

5.1.1 Daily vibration exposure exceeds the EU Action Value 
It is impossible to define a long term representative daily vibration exposure to 2 decimal places 
for professional truck drivers. An obvious reason, for Brorssons drivers at least, is that they pick 
up timber at various places. Every week they drive not only Rd 331 between the coast and 
Ramsele, but also other connecting local and forest roads in the Ramsele area. They drive at 
different speeds on roads with varying roughness. The result is various vibration intensities. 
Given this complexity, a set of calculations have had to be made in order to consider the various 
driving routes. This analysis has been carried out using the Vibration Doses Calculator, avail-
able on the UK Health and Safety Executive’s website13. Normal shifts with roundtrips from for-
est to coast, resulted in A(8) values from 0.65 m/s2 and higher. Some of the forest roads outside 
Ramsele were very rough, but since speed was low and the driving times on them were similarly 
low, their contribution to the total daily exposure was lower than the main partial exposure from 
the long round trips on Rd 331 between Ramsele and the coast. Figure 38 shows the resulting 
A(8) of 0.76 m/s2 for an 8 h shift example, including simulation of pauses with zero vibration. 
Figure 39 shows an example of calculation details. 

Daily Vibration Exposure A(8)
Scania R480G 6x4 timber logging truck

8 h morning shift: Ramsele - Backe (empty), 2 x Forest Road (e & l), Backe - Stavre - Ortviken 
(loaded), Ortviken - Ramsele (e), other local and forest roads (e & l), and 100 min pauses.
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Figure 38 The drivers daily exposure to vibration exceeds the EU Action Value 
 

                                                 
13 Internet: www.hse.gov.uk/vibration/calculator.htm  
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Vibration intensity Partial exposure
m/s² hours minutes m/s²

Ramsele - Backe Empty 1,66 0 25 0,382
Backe - Ramsele Loaded 1,32 0 28 0,316
Ramsele-Österforsse Loaded 0,54 0 43 0,160
Österforsse - Viksmon Loaded 0,66 0 7 0,080
Viksmon - Stavre Loaded 0,66 0 56 0,226
Stavre - Tunadal Loaded 0,44 0 9 0,061
Tunadal - Stavre Empty 0,56 0 9 0,076
Stavre - Viksmon Empty 0,83 0 56 0,285
Viksmon - Österforsse Empty 0,83 0 7 0,100
Österforsse - Ramsele Empty 0,58 0 40 0,168
Forest Road Empty 0,80 0 22 0,172
Forest Road Loaded 0,64 0 22 0,137
Misc roads, average intensity E & L 0,79 0 58 0,276
Pause, non-driving time 0,00 0 100 0,000

0,76

Exposure time

Daily exposure value, m/s² A(8)  

Figure 39 Vibration Dosis Calculator spreadsheet, calculating A(8) for an example route 

 

In accordance with the ISO 2631-1 standard, the seat vibration was measured in three 
directions; x (fore-aft), y (lateral) and z (vertical). The measured vibration was high in all these 
three axes. The EU vibration directive states that the daily exposure value A(8) shall be 
calculated from only the axis with highest vibration. Furthermore, the values for lateral (y) and 
fore-aft (x) vibration shall be multiplied by 1.4, since vibration in these directions are considered 
to be unhealthier14 than vertical vibration (z). On “normal” roads, the vertical axis typically has 
highest vibration. However, on some sections of 331, the lateral axis had the highest vibration 
(after multiplication with the 1.4 factor). 

All the daily exposures calculated were significantly above the EU Action Value of A(8) = 0.5 
m/s2. This finding is very serious. The law now calls for the employer, Brorssons Åkeri AB, to 
take necessary technical and/or organizational actions to minimize the driver’s exposure to 
vibration. In fact, all companies with similar trucking operations and conditions to Brorssons 
(long and bumpy driving) are obliged by the law to make a relevant risk assessment of the 
drivers’ vibration exposure.  

                                                 
14 The factor 1.4 is only used for health risk assessment. For comfort, the factor is 1 which means no extra weighting.  
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5.1.2 Some of the worst bumps gave spinal compression stress Sed over 0.5 MPa 
Transient vibration (mechanical shock) may cause high compression stress in the spine. This 
health risk is presented in the section “3.1.3 Bumps are of special concern to both ride quality 
and health”. 

The worst bumps in the current tests were located on small roads, such as on the road to the 
Sawmill in Graninge. When driven at low speeds of about 40 km/h, these bumps exposed the 
truck driver to spinal compression stress Sed over 0.5 MPa. This stress level corresponds to a 
health risk, as per ISO 2631-5 [5]. 

Also on the “main road”, Rd 331, truck drivers drove over many bumps that excited significant 
transient vibration. The first bump the drivers faced in the morning was only 400 m from Brors-
sons garage at the western exit from Ramsele. As seen in Figure 40, the bump was so deep, 
that it had rubber marks made by retracted, non-rotating, truck bogie tyres, similar to the marks 
seen in landing zones on airfield runways. This bump was due to settlement at an old culvert 
and had been present for many years. 

 

 
Figure 40  Bump due to settlement at an old culvert in Ramsele, RDB section 141/336 km 
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Rd 331 had not only severe bumps due to old culverts, in some sections there were even worse 
bumps at newly reconstructed culverts. One example was in Gammelmo, 7 km south of Ram-
sele. A photograph of this site can be seen in Figure 41. The section in Gammelmo is similar to 
one of the most stressing driving conditions perceived by EU NP professional drivers: “Truck 
drivers stated that the worst sections have bumps at culverts, located at the bottom of a valley”. 

 

Figure 41 Bumpy newly reconstructed culvert in Gammelmo, RDB section133/000 km 
 

When driving at normal highway speed over this new culvert, the driver was exposed to “very 
uncomfortable” transient vibration, as seen in Figure 42. 
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Figure 42 Very uncomfortable truck seat vibration when driving over the new culvert in Gammelmo 
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The cause of the transient vibration in the driver’s seat can be seen in the following 3D laser 
scan from the Profilograph. Figure 43 shows a 20 m long and 57 mm deep hollow in the newly 
paved asphalt over the culvert. The culvert had been reconstructed just a couple of months be-
fore the test in August 2007. 

57 mm / 20 m 
hollow

 
Figure 43 3D laser scan of settlement at reconstructed culvert in Gammelmo 
 

An example of a series of extremely annoying bumps was found 5 km south from Edsele. At this 
location there were three very bumpy culverts in a row within 200 m. When these culverts were 
crossed by a heavy truck travelling at around 80 km/h, the result was repeated transient seat 
vibration. The in-truck measurements recorded powerful shocks in the vertical, pitch and fore-aft 
directions at all three bumps, as seen in Figure 44. The first bump is indicated by skid marks 
from truck tyres, as seen on the Right-Of-Way video in the figure. 

 
Figure 44 Three bumpy culverts within 200 m, RDB section 117/200 km 
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Two of the three bumps at RDB 117/200 km are shown below in a 113 m long 3D laser scan in 
Figure 45, taken by the Profilograph. The driving direction is from the left to the right of the 
graph. These bumps were up to 50 mm deep; a magnitude comparable to the suspension com-
pression stroke of a normal road vehicle. With such a bump there is a high risk for the suspen-
sion to hit its bump stops, causing a non-linear shock. Obviously this kind of severe road obsta-
cle can be hazardous when driving at highway speeds. 

 
Figure 45 3D laser scans of two bumpy adjacent culverts, RDB section 117/200 km 
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5.1.2.1 One of the worst bumps was found on the guest section of National Highway 87  
On the short section between Viksmon and Österforsse, Rd 331 is a “guest road” on Hw 87. It 
was surprising to see that this National Highway section gave as high truck seat vibration inten-
sity as the long section Stavre - Viksmon on Rd 331, see spreadsheet in Figure 39. However, 
the worst roughness on the short Hw 87 section could be reduced very efficiently. This can be 
accomplished at low cost, by the repair of the bumps at a high banking over the culvert about 1 
km north of Viksmon. Profilograph data in Figure 46 shows a large bump with an IRI20 = 6.4 
mm/m just above the culvert, and another bump with IRI20 = 7.6 mm/m at the poorly finished as-
phalt joint, just one hundred meter later. 

An IRI20 of 7.6 mm/m is comparable to the IRI measured with a Profilograph on the 1 dm high 
speed bump in front of Umeå Plaza Hotel. At that bump, Mrs Gunhild Högberg from 
Örnsköldsvik was severely injured by a spinal compression fracture, when riding with her 
husband at low speed in their campervan. 

As seen in Figure 46, the section on Hw 87 reminds of one of the most stressing driving condi-
tions perceived by EU Northern Periphery professional drivers: “Truck drivers stated that the 
worst sections have bumps at culverts, located at the bottom of a valley” [49]. 

Hw 87, Viksmon - Österforsse
Bump at culvert (reconstructed in wintertime), RDB = 77 340 m
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Figure 46 Bump at culvert in the bottom of a valley, where grade change from downhill to uphill at 0 %  
 

The culvert beneath the high banking on Hw 87 was undermined in the winter of 2003 and an 
emergency reconstruction was carried out to make the road serviceable again. The emergency 
repair was done at temperatures below zero; therefore good compaction at optimum moisture 
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content was impossible. The present roughness is obviously not acceptable in the long-term 
perspective, as can be seen in the results. This kind of winter repair must to be finished by a 
second phase in summertime, after the inevitable settlements have happened. The poor winter-
paved asphalt should then be milled off, the base watered and compacted thoroughly, uneven-
ness smoothened and finally repaved with new asphalt. The smoothness over such recon-
structed culverts should be systematically monitored for two years, and repeated repaving ac-
tions ordered if needed. 

5.1.2.2 Bumpy joints at the bridge over Fax River in Helgum 

Transient vibration can also be caused by bumpy bridge joints. A 3D laser scan from Hazardous 
Site Helgum is seen in Figure 47. The joints on both sides of the bridge are tenfold times 
rougher than the SRA tolerance. When timber logging trucks pass the > 4 cm bumps, snow and 
mud fall off the vehicles, contaminating the road and requiring intensified ploughing.  

 
Figure 47 3D laser scan of a bumpy joint at the bridge over the Fax River at HS Helgum 
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5.2 THE TRUCK SUSPENSION SYSTEMS PERFORMED VERY WELL 

 

The measurements recorded during the tests permitted the performance of the vertical suspen-
sion systems of the Scania test truck to be evaluated. Figure 48 present’s data from a 13 minute 
ride at 78 km/h over 17 km of Rd 331, southbound from the junction with National Highway 87 in 
Viksmon. The vertical vibration intensities recorded are plotted over frequency, using a log-log 
scale. This figure does not represent response functions, so a similar figure from another road 
section will differ somewhat, depending on the properties of the particular road profile. 
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Figure 48 Power Spectral Density of vertical acceleration in the trucks suspension systems 
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5.2.1 The wheel axle had much 11 Hz vibration from 2 m wave roughness 
The blue trace at the top of Figure 48 shows the vibration recorded at the wheel axle. There is a 
wide vibration maximum at about 11 Hz, and high clear resonance peaks at about 45 Hz, 60 Hz 
and wide maximums below 2.7 Hz. The lack of a clear peak at the 11 Hz maximum may be due 
to superposition of several peaks. One such peak is the wheel axle parallel hop resonance; an-
other is the wheel axle tramp (roll) resonance. The 45 Hz peak may be related to the tyre’s 1st 
eccentric modal resonance. As the wheel is close to the vibration source (the road), Formula 1 
can be accurately used to relate the 11 Hz frequency with maximum intensity to road roughness 
with wavelengths of 2 m. The other peaks relate to 0.37 m, 0.5 m and 8 m. The intensity at the 
45 Hz vibration peak is equal, or below, the intensities from 6.5 to 20 Hz. This bandwidth corre-
sponds to a road roughness ranging from 1.1 to 3.3 m. This waveband, 1.1 to 3.3 m, is obvi-
ously perceived by the truck wheel axle as the worst roughness in the road section. 

5.2.2 The frame had much 1.2 Hz vibration from 18 m wave roughness  
The green trace, second from the top, shows the vibration recorded at the truck frame. The 
maximum is at some 1.2 Hz, with more intense vibration than at the wheel axle. This 
amplification is likely to be due to resonance in the chassis suspension system, and relates to 
road profile waves with some 18 m length. The second peak is at about 2.7 Hz, and a third at 5 
Hz. These peaks relate to 8 m and 4.3 m. The highest intensities are seen from 0.7 Hz up to 3 
Hz. This shows that the truck frame perceived the waveband from 7 to 31 m as the worst 
unevenness in the road section. 

5.2.3 The cab suspension system gave good isolation at high frequencies 
The red trace, third from the top in Figure 48, shows the vibration in the truck cab15. Just as in 
the frame, the maximum is at 1.2 Hz, and is related to road profile waves with some 18 m 
length. At frequencies above 4 Hz, the cab vibration is much lower than the frame vibration. Be-
low some 2.7 Hz, the cab suspension system amplifies the frame vibration. Similar to the frame, 
the truck cab perceived the waveband from 7 to 31 m as the worst unevenness in the road sec-
tion. 

5.2.4 The seat suspension isolated high frequency vibration further 
The purple trace, at the bottom, shows the vibration on the truck seat. Just as in the cab and in 
the frame, the maximum is at about 1.2 Hz. The seat suspension isolates vibration over some 
16 Hz very well, as it is designed to. At frequencies between 4 and 16 Hz, vibration from the cab 
seems to be amplified, getting higher on the seat pan. However, the RT 3050 truck cab 
reference sensor was not mounted under the driver seat, but between the two seats. Therefore 
data from the cab (input) and the seat pan (output) must be compared with care. 

                                                 
15 The cab vibration data are measured with the OxTS RT 3000 system, sampling at “only” 100 Hz. This cause some 
aliasing errors at high frequencies, so with respect to the sampling theorem, cab vibration data at frequencies above 
50 Hz are not reliable. These data are of no practical importance for the research objectives in this case study. 
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5.2.5 Altogether, the truck suspension systems gave excellent vibration isolation 
The vibration “transmissibility” from the wheel axle to the driver seat is shown in Figure 49. An 
amplification (gain) of “1” means “what comes in, gets out”; neither isolation, nor amplification. 

At frequencies over 10 Hz, the truck suspension systems have together isolated more than  
99 % of the wheel axle vibration from reaching the driver seat. This is of course an excellent 
performance. Vibration at frequencies from 3 to 10 Hz has been isolated with efficiency from 0 
up to 99 % as the frequency increases. At the “slow” frequencies below 3 Hz, amplification 
makes the driver seat vibration reach up to 2.5 times the wheel axle vibration. 
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Figure 49 Gain of vibration from wheel axle to driver seat 
  

5.2.5.1 The first problem is low frequency vibration, due to long wave road unevenness  

As seen above, the worst ride vibrations are from 0.7 to 3 Hz, at 78 km/h related to road 
unevenness within a waveband of 7 to 31 m. 
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When calculating the drivers exposure to WBV, seat vertical vibration at frequencies below 2 Hz 
are weighted (reduced) by a factor 0.5 or smaller, as per the Wk filter in ISO 2631-1 [18]. 

Despite this 50 % reduction by the frequency-weighting, very high intensities still remain at 
frequencies between 0.7 and 3 Hz.  

For the 17 km section south of Viksmon, the root-mean-square (RMS) “averaged” value for the 
weighted xyz vector was 0.86 m/s2. This rates the 13 minute ride “uncomfortable” on average, 
as per the ISO 2631-1 comfort scale in Table 1. 

5.2.5.2 The second problem is the intense lateral vibration 

Calculation of the 13 minute ride’s contribution to the daily exposure A(8) is based on the single 
axis having highest RMS. This was the z-axis, which had 0.59 m/s2. When analyzing health risk, 
lateral vibration must be multiplied by a factor 1.4 [2]. After this operation, the y-axis had almost 
as much vibration as the z-axis; 0.54 m/s2. This is remarkably high, compared to the vertical vi-
bration. “Off-roads” such as Rd 331 calls for a new approach to truck suspension systems. It is 
obviously not enough to isolate vertical vibration; there is also a need to prevent or isolate lat-
eral vibration as well. 

5.2.5.3 The third problem is the transient bumps 

The worst bump in the 17 km long section southbound from Viksmon, gave a maximum tran-
sient vibration value of 2.44 m/s2 along the XYZ vector (MTVVV). This value, calculated after 
integration over 1 second, corresponds to an “extremely uncomfortable” ride on the ISO 2631-1 
comfort scale in Table 1. 

5.2.6 The broken truck suspension bush had no significant effect 
The first truck test run was made without a bush on one damper in the chassis suspension sys-
tem, as seen in the photographs in Figure 30. Before the main test runs, the bush was replaced 
at a Scania workshop. The truck driver’s seat vibration has been compared with and without the 
bush for the first 30 km section southbound from Ramsele. The results show that the vertical (z-
axis) vibration was 3.3 % higher with the bush in place. This is within the reproducibility noise 
level, so it should not be taken as a working bush makes seat vibration worse. Rather, the re-
sults show that the effect of the damper is low. However the truck chassis suspension system 
provides much of its damping by other means than the “damper” component. 

5.2.7 The lateral vibration was 124 % higher in the truck than in the car 
The average xyz vibration on the Scania truck driver’s seat was 83 % higher than the vibration 
on driver’s seat in the Ford Mondeo (see photograph in Figure 35), when comparing data from 
Viksmon and 17 km towards Viksjö. While the truck ride was “uncomfortable”, the 0.47 m/s2 car 
ride was only “a little uncomfortable” as per the ISO comfort scale in Table 1. While the worst 
bump was “very uncomfortable” (MTVVV = 1.48 m/s2) in the car, the worst bump was “extremely 
uncomfortable” (2.44 m/s2) in the truck. These findings confirm the indicative preferences given 
in Table 2. 
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As expected, the high Scania truck was more prone to RBCSV, since it showed 124 % higher 
average lateral (y-axis) vibration than the lower Ford Mondeo passenger car. The ratio between 
truck and car was 34 % higher on lateral vibration (y-axis) than on vertical vibration (z-axis). 
This further confirm that deformed pavement edges are a much larger problem to truck drivers 
than to car drivers, (including Councillors and road agency officers in their comfortable duty 
cars). 
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5.2.6 Rd 331 can’t be efficiently repaired by traditional asphalt overlay 
The vibration intensity of a truck wheel axle can be very high, from 0.7 to 3 Hz in Figure 48. At 
78 km/h, these frequencies correspond to road roughness with waves ranging from 7 to 31 m. 
The peak vibration in the frame, cab and seat occurs at 1.2 Hz, which corresponds to road pro-
file waves of approximately 18 m lengths.  

These truck responses show a ride problem that is related to long wave unevenness in the road. 
This finding is confirmed when analyzing the same road profiles scanned by the laser/inertial 
Profilograph. A typical road profile example from the 17 km section is given in Figure 50. It re-
cords up to 60 mm deep hollows in wavelengths of over 30 metres. 

 

Figure 50 Rd 331 Viksmon - Viksjö: Unevenness with high amplitudes at up to over 30 m long waves 
 

The SRA Central Region plans to carry out a traditional asphalt overlay for this road section in 
2008. However, its steep 7 - 31 m waves are obviously too long to be efficiently repaired by a 
simple asphalt overlay. These waves are so long that the paving equipment will simply ride 
along them, only raising the unevenness by the thickness of the new asphalt mat. To produce a 
good solution, the road machines must be effectively controlled and forced to make the neces-
sary changes to the unevenness, as the present defects are much longer than the machines 
themselves. It can be claimed that these waves can be repaired by subjective spot fillings be-
fore paving the mat. However, this ad-hoc method is unable to make the alterations necessary 
without using an excessive amount of costly asphalt. A proper and cost-effective repair of this 
road requires an accurate measurement of the road 3D-geometry, and a careful (computer 
aided) rehabilitation design at each 5 m section. The benefits in terms of the reduced low fre-
quency ride vibration of this type of road repair method are presented in detail by Granlund & 
Lindström (2004) [13]. Another alternative is a more costly “total pavement reconstruction”. 
Unless one of these two methods is used, much of the low frequency vibration is likely to remain 
for heavy vehicles after the road repair has been carried out. 
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5.3 GOOD FIT BETWEEN PROFILOGRAPH DATA AND TRUCK RIDE 

5.3.1 Precision of repeated truck ride 
There are of course variances between truck rides on a given road section. The reproducibility 
for the seat vibration between two runs with truck driver A and a third run with driver B is shown 
in Figure 51. The graphs are not perfectly synchronized in distance, due to slightly different lat-
eral position in curves et cetera. Despite being instructed to follow the ruts, it appears that one 
of the drivers may have been more active in steering to avoid driving over bumps. This is very 
human, since it is easy to revert to periods of ‘normal driving behaviour’ during test driving over 
a number of days. The graphs show clear differences between good and poor road sections, 
even though the variance in a given section can be significant. It will be recalled that similar 
variances were seen when comparing truck ride data with the reference road profile data from 
the Profilograph. However, by filtering data from repeated truck runs, variance can be reduced. 
 

 
Figure 51 Reproducibility in truck driver seat vibration between three runs at HS S Viksmon 
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5.3.2 Profilograph data is a proven reference to vertical ride vibration 
Previous research has shown a very good fit between pavement roughness, as measured by a 
Profilograph, and vertical ride vibration in heavy trucks. However, in road sections with very 
poor bearing capacity this fit may drop significantly, as shown by Ahlin et al (2004) [19], due to 
soft spots in the pavement affecting the roughness experienced through the truck tyres. 

Profilograph data is frequently used in advanced studies on vehicle ride vibration. One example 
is seen in the Ph D thesis on heavy truck fatigue damage by Bogsjö (2007) [22], based on data 
from Rd 331 and other Northern Periphery roads. Another study of Profilograph data from Rd 
331 is reported in the Masters thesis on ambulance car ride quality by Nilsson (2004) [69]. 

5.3.3 Profilograph data emerge a good reference to truck roll angle and rate 

5.3.2.1 RBCS show good fit to truck roll angle 

In this project, an important issue is truck roll vibration and its relation to undesired variance of 
the Rut Bottom Cross Slope (RBCS) of the pavement. The case study on Rd 331 included Pro-
filograph measurement of pavement RBCS, as well as measurement of the dynamic roll angle 
of the Scania R480 truck cab. Comparisons of the two types of data show a good fit, as seen at 
Hazardous Site Backe (Edsele) in Figure 52. This confirms the value of Profilograph data as a 
reference input for calculations into the dynamic roll motion of trucks. 

Straigth road section in Backe (Edsele)
Pavement Rut Bottom Cross Slope vs estimated from Truck Cab Roll Angle
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Figure 52 Good fit between pavement Cross Slope and Truck Cab Roll Angle
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5.3.2.2 Rock ´n Roll at HS Backe (Edsele) 

Figure 53 shows a photograph of the truck, warping as it enters a section of severe long-wave 
edge deformation at RDB distance 127/325 km. The truck’s large roll angle should be particu-
larly noted. Also noteworthy are the different roll angles of the truck and the trailer, as well as 
the different yaw angles. 

 

Figure 53  HS Backe (Edsele): Warping truck and trailer at RDB distance 127/325 km 

A cut screen-print from the onboard Dewetron system is given in Figure 54. The recordings 
were captured synchronized with photographs taken from the roadside as in Figure 53 above. 
The forward facing video in Figure 54 actually shows the exterior photographer standing beside 
the road. The white undulating top trace shows the variance of the truck cab roll angle, recorded 
by the OxTS RT 3050 unit. The peak rate of the change in roll angle at the Hazardous Site at 
Backe (Edsele) was over 3 °/s. In the case of the test vehicle, a roll angle of 1 ° corresponds to 
a 35 mm vertical displacement between the left and right tyres. 

 

Figure 54 HS Backe (Edsele): ROW video and some of the recorded truck ride data 
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Section 127/325 km was rated as “very uncomfortable” and “hazardous” by the truck drivers. 
The vector of roll and pitch rates peaked at 4.48 °/s. This touches the threshold used in New 
Zealand, as presented in section “3.3.2.2 Roll vibration is excited by undesired variance of Rut 
Bottom Cross Slope”. The section’s RBCSV peaked at 0.47 %. 

Excessive Cross Slope in straight road sections is an ergonomic problem 

The cross slope (CS) magnitude is remarkable at the Hazardous Site at Backe (Edsele). The 
section has values ranging between -4 % and -7 %, see Figure 52, despite the design value for 
straight roads being -2.5 %. The maximum value allowed for CS when designing extremely 
sharp curves in Sweden is +/-5.5 %. Obviously this straight section has too much CS. Excessive 
CS contributes to a poor work environment for professional drivers as they have to sit in an 
awkward side sloping position to counteract the adverse CS, causing the spine to be twisted, 
while also being exposed to high ride vibration. 

Response data are not good reference to road management 

It may seem that truck response data could be useful in pavement management systems. How-
ever, this type of road condition data depends on many dynamic parameters, such as speed 
and lateral position. Therefore response data from commercial trucks or other vehicles could 
give poor estimates of pavement parameters such as cross slope. This is obvious at RDB sec-
tion 127/300 km in Backe (Edsele), where the truck roll response differs by almost 2 percent, 
compared to the pavement cross slope, as seen in Figure 52. This difference is many times lar-
ger than the tolerance limit applied on quality certified road condition data used in normal pave-
ment management systems. 
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5.3.2.3 Rock ´n Roll at HS Åkerö 

The HS Åkerö pavement edge damage is seen on photo in Figure 55. Take note of the ex-
ploded truck tyre to the right! Traditional optical photographs do not reflect unevenness very 
well. A better way of visualizing unevenness is to use a 3D laser scan. This highlights all of the 
unevenness features. A Profilograph scan of the HS Åkerö damage can be seen in Figure 56. 
The deformation at this site was found to be 69 mm deep.  

A cut screen-print from the onboard Dewetron Stream Machine system is reproduced for HS 
Åkerö in Figure 57. The white undulating top trace shows the variance of the truck cab roll an-
gle. The RT 3050 had registered a peak rate for the roll angle of 6.8 °/s. The lateral acceleration 
measured in the truck cab was 2.0 m/s2, and it was 75 % higher (3.5 m/s2) at the driver’s seat 
pan. The latter confirms that current seat suspension systems are unable to isolate lateral vibra-
tion as they have been designed primarily to isolate vertical vibration. These seats appear to 
actually amplify the problem, in fact, with lateral jolts at low frequencies. The HS Åkerö section 
was rated as “very uncomfortable” and “hazardous” by the truck drivers. 

The cross slope magnitude is also remarkable at the straight road section at Hazardous Site 
Åkerö. Recalling that the design recommendation for cross slope was -2.5 %, this section has 
values ranging between -3 % and -6 %. The peak CS exceeds the maximum banking of +/-5.5 
% allowed when designing the sharpest curves in Sweden. 

 

Figure 55 Pavement edge deformation at HS Åkerö. Take note of the exploded truck tyre! 
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Figure 56 Profilograph 3D plot of the HS Åkerö 69 mm deep edge deformation 

 

 

Figure 57 HS Åkerö: ROW video and some of the recorded truck ride data 
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As stated above, an important issue for this research was the relationship between undesired 
variance of the Rut Bottom Cross Slope (RBCS) of the pavement and the truck roll vibration. In 
the previous section, a good fit was found between RBCS and truck cab roll angle. The variance 
of cab roll angle is a measure of the cab’s roll vibration. Further analysis confirms a good fit be-
tween variance of the roll angle and variance of the RBCS (RBCSV), as can be seen in data 
from HS Åkerö in Figure 58. 

Variance of Truck Cab Roll Angle vs Variance of Cross Slope
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Figure 58 Good fit between Variance of RBCS and Variance of Truck Cab Roll Angle 

The RBCSV parameter has been designed to identify those sections with cross slope variance 
that cause roll vibration in the suspended masses (body, cab and payload) of heavy trucks, as 
well as in the wheel axle [21]. As a result of this multi-purpose requirement, one should not look 
for a perfect match between RBCSV and the roll vibration of the cab. There can be significant 
variances between reproduced truck rides, as seen in Figure 51. With this in mind, the match 
seen in Figure 58 seems good for the intended purpose of the RBCSV parameter. 
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5.3.2.4 Warping RBCS at Hazardous Site N Åkroken 

The Hazardous Site north of Åkroken shows an unusually high accident number, as seen in 
Figure 28. This site also show extremely high RBCSV; 1.04 %. This is ten times the “noise level” 
of 0.1 %, as seen in Figure 59. This clear alarm is caused by a warping change in cross slope 
from -4 % to -7.5 % and then back to -4 %. The net change of 2.5 % cross slope corresponds to 
a change of 5 cm in elevation between left and right wheel track, as they are spaced 200 cm; 
0.025 * 200 = 5 cm. 
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Figure 59 High RBCSV indicate severe pavement edge deformation at HS N Åkroken 
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5.3.2.5 Warping RBCS at Hazardous Site Meåstrand 

In contrast the Hazardous Site at Meåstrand “only” shows a slightly increased accident number. 
However, the truck drivers report this to be one of the most dangerous sites. The modest con-
sistency between driver opinion and accident black spot map, may be explained by the fact that 
this site has low traffic intensity. This calls for an “Individual Risk” mapping, where accident 
number is divided by traffic intensity AADT as described by Ogden & Daly [64]. However, such 
an analysis requires further resources not available within this project which has its focus on 
health issues rather than traffic safety. 

HS Meåstrand shows a high degree of warping RBCSV; 0.95 %. This is almost ten times the 
“noise level” of 0.1 %, as seen in Figure 60. This clear “alarm” is caused by a warping change in 
cross slope from -2.9 % to -5.2 % and then back to -3.0 %. The net change of 2.3 % cross slope 
corresponds to a change of about 4.6 cm in elevation between left and right wheel track, as they 
are spaced 2 m. A photo of a truck yawing to avoid this pavement edge is showed in Figure 61. 
Take note of how the painted road marking line reflects the lateral component of the pavement’s 
deformation. Also take note of the glare of the asphalt repair in the outer wheel track. Friction 
aspects on this kind of single track patch repair will be further discussed later in the report. 
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Figure 60 High RBCSV indicate severe pavement edge deformation at HS Meåstrand 
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Figure 61 Severe pavement edge deformation at HS Meåstrand 
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5.3.2.6 Warping RBCS at Hazardous Site Alderån 

HS Alderån shows an unusually high accident number, as seen in Figure 28. This site also 
shows several peaks with RBCSV up to 0.55 %. This is over five times the “noise level” of 0.1 
%, as seen in Figure 62.  
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Figure 62 High RBCSV indicate warping pavement edge deformation at HS Alderån 
 

HS Alderån also has other problematic features. It is a sharp right hand curve at the foot of a 
long and steep hill. In the curve, the cross slope is worse than -8 %. This is a very large slope, 
especially when appearing just after a long grade. Furthermore, the cross slope transition 
lengths are too short. On top of all of this, the pavement Mega Texture (MeTx) is unacceptably 
high in the curves´ outer wheel path.  

MeTx is longer than Macro Texture, but shorter than roughness. These short waves range from 
5 up to 50 cm. High MeTx causes distortion in the tyre/road contact patch, thus being a source 
of friction problems. MeTx is also a significant source of annoying interior and exterior noise. At 
HS Alderån, the MeTx peaked at 0.9 mm, being 4.5 times the normal “noise level” of 0.2 mm. 
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5.3.2.7 Warping RBCS at Hazardous Site Åsäng 

HS Åsäng shows an unusually high accident number, as seen in Figure 28. A photo of a recent 
truck skid accident can be seen in Figure 63. The Police reported the friction to be zero, due to 
polishing. The truck driver said that the truck responded neither to steering, nor to braking, at 
the exit of the left hand curve.  

 
Figure 63 Truck skid accident in Åsäng, 2007-02-22 [Photo: Torbjörn Elverheim, ST] 
 

This site also shows several peaks with RBCSV up to 0.49 %. This is over five times the “noise 
level” of 0.1 %, as seen in Figure 64.  

There are three transient RBCSV peaks in Figure 64, at distances of 11/450, 11/435 and 11/403 
km. Such peaks relate to short wave CS variance, which excite wheel axle tramp. This rolling 
motion of the axle results in lateral tyre displacements polishing the road, as discussed in sec-
tion “3.2.6 Wheel axle vibration impacts on traffic safety”. The Police observation on the road 
being polished into low friction give support to the theory of RBCSV causing low friction due to 
polishing. 

As mentioned, Figure 64 shows three transient RBCSV peaks between 11/450 and 11/403 km. 
These transients increase the RBCSV by some 0.1 %, and correspond to about 1 % change in 
RBCS as seen in the graphs. In other terms, the transients correspond to 0.01 x 200 = 2 cm 
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warping in profile elevation in one of the rut bottoms. Such warps are characteristic for steps at 
the start and end of poorly made 2 cm thick pavement repair patches. Macro Texture results 
(not shown here) also indicate likely starts and stops of patch work at the sections distance 
11/450, 11/435 and 11/403 km. Furthermore, the MaTx was remarkably low, down to 0.2 mm at 
the patch indications. A benchmark minimum value is 0.6 mm MaTx for acceptable wet friction 
when braking at highway speeds. As seen on the photograph in Figure 63, the ice rut bottoms 
showed some asphalt, so the low MaTx may possibly have contributed to the observed low fric-
tion. 

Junction with Rd 703 bound for Ljustorp at section 11 497 m 
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Figure 64  High RBCSV indicate warping pavement edge deformation at HS Åsäng 
 

The photograph in Figure 63 was taken at about section 11/400 km, and the skidding may have 
occurred just at the peak RBCSV in section 11/435 km. There is also another indication of the 
accident being related to the pavement condition. This is discussed in the section on insufficient 
Drainage Gradient.  
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5.3.2.8 Warping RBCS at Hazardous Site Mjällåsen 
HS Mjällåsen shows an unusually high accident number, as seen in Figure 28. It has a long 
curve with varying curvature. In this curve, there are sections with excessive CS; up to 8.23 % 
negative CS. An ideal CS for dynamic cornering balance with respect to current curvature is -4 
% in this section.  

This site also shows several RBCSV peaks up to 0.85 %. This is more than eight times the 
“noise level” of 0.1 %. This clear “alarm” is caused by a warping change in cross slope from -3.3 
% to -0.8 % and then back to -3.9 %. The net change of up to 3 % cross slope corresponds to a 
change of 6 cm in elevation between left and right wheel track, as they are spaced 2 m. The 
RBCS trace down to -0.8 % indicates that the pavement centre, rather than the edge, has 
collapsed. If this is the case, this road section could have serious bearing capacity problems. 
Such problems should be considered when planning repair of the road section. If only a simple 
surface repair is done, the road will most likely deteriorate in very short time. 
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Figure 65 High RBCSV indicate warping pavement deformation at HS Mjällåsen 
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5.3.2.9 RBCS is a more accurate pavement parameter than Lane Regression CS 

There are many ways to define/measure the Cross Slope (CS) of a pavement lane. Since 1997, 
the Swedish Road Administration’s Pavement Management System (PMS) has measured CS 
by the “regression method”. This uses the 17 laser measurement spots on the Profilograph dis-
tributed over a width of 3.2 m. In the regression method, data from the whole 3.2 m wide cross 
section are used to calculate the CS. In sections with severe edge deformation, the regression 
method may report significant smaller slopes than perceived between the left and right wheels 
of a truck. One example is found at HS Åkerö, in the section showing severe edge damage at 
RDB distance 125/275 km. As can be seen in Figure 66, the lane regression CS differs one unit 
from the 6 % truck cab roll angle; a relative difference of 1/6 = 17 %. In 2006, the SRA defined 
Rut Bottom Cross Slope (RBCS) as a parameter focusing on pavement slopes as perceived as 
a priority by drivers of heavy trucks [21]. Figure 66 shows a good fit between lane regression CS 
and the new RBCS parameter, except at the pavement damage in section 125/275 km, where 
the RBCS matches the truck roll angle much better. The difference between these two meas-
ures of cross slope can be large at sections with severe edge deformations in the shape of a 
basin, where a “wall” of displaced material is raised outside the outermost wheel as seen in 
Figure 55 and Figure 56. This kind of damage has a great effect on truck ride and RBCS must 
therefore be considered to be the most accurate road-user oriented parameter of the two. 

 

Figure 66 RBCS is a better estimate of truck roll angle, than Lane Regression CS is 
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5.3.3 Road edge deformation may excite as much lateral vibration as a curve 

Lateral acceleration is commonly recognized as a key parameter for vehicle driving stability, and 
thus for traffic safety. This is especially relevant on slippery surfaces, where the lateral friction 
forces are small. When a vehicle changes its roll angle quickly, the roll motion is accompanied 
by a lateral acceleration. An example from HS Åkerö is given in Figure 67. This shows a left 
hand curve (curvature -1.6) at distance 126/200 km, reflected by the change of sign in cross 
slope as it becomes superelevation through the curve. The graph for “Running Root-Mean-
Square of Truck Cab Lateral Acceleration” shows a semi-static level of 0.78 m/s2 through the 
curve. This can be compared to the value of 0.66 m/s2 for lateral RMS acceleration recorded on 
the section of straight road with severe edge damage at HS Åkerö, section 125/275 km. In this 
latter section, the peak lateral acceleration was -1.37 m/s2, whilst the peak lateral acceleration in 
the curve at 126/200 km was only -0.94 m/s2. 

The HS Åkerö example clearly shows that severely deformed pavement edges are a serious 
safety hazard, as they may result in lateral acceleration forces comparable to the lateral forces 
experienced when travelling a horizontal curve. 

The grey trace in Figure 67 shows that the pavement RBCSV parameter was registering ap-
proximately 0.1 % through the curve, where the cab lateral acceleration was fairly constant with 
low vibration. However as intended, the parameter quickly gives a clear alarm of 1.18 % (being 
over 6 times larger than the 0.1 to 0.2 % noise level) when it enters the HS Åkerö section of 
pavement edge damage. This example also shows that the RBCSV parameter does not give 
“false alarm” due to normal superelevation transitions at left hand curves, where the truck cab 
roll angle smoothly tilts from side to side.  

Truck Cab Lateral Accelaration vs Pavement Cross Slope
HS Åkerö edge damage at 125 275 m
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Figure 67 Edge damages may excite as much lateral acceleration as a horizontal curve do  
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5.4 DRAFTING A “WARPING LIMIT” FOR RBCSV 

One goal in this project was to draft limit values for maximum warping between the road profile 
in left and right wheel track; the ‘undesired variance’ of the pavement’s Rut Bottom Cross Slope 
(RBCS). For this task, it is important to understand typical distributions of warping on road 
sections in “normal” and in bad condition. 

The 26.5 km section from Östergraninge down to Viksjö is a “quite normal old road”. Compared 
to the Hazardous Sites N Åkroken and N Viksjö (see the black spot map in Figure 28), it shows 
a modest accident record. The distribution of Rut Bottom Cross Slope Variance (RBCSV) values 
on this section is shown in Figure 68.  
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Figure 68 RBCSV distribution at a �normal� old road, Östergraninge - Viksjö 
 

The 17 km from the junction with Hw 87 in Viksmon, and down southeast to Östergraninge, is a 
rough section with severe pavement edge deformations, resulting in intense lateral vibration in 
the truck cab. An unusually large number of traffic accidents have taken place on this section, 
including the HS Björknäset, as seen on the black spot map in Figure 28. The distribution of Rut 
Bottom Cross Slope Variance (RBCSV) values on this section is shown in Figure 69.  
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j
"Rough road", RDB 74 989 - 58 300

2%

12%

29%

47%

61%

73%

81%
86%

90%
94% 95% 97% 97% 98% 98% 99% 99% 99% 100%100%100%

0

500

1000

1500

2000

2500

3000

0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 1,10
Undesired RBCS variance [%]

Fr
eq

ue
nc

y

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sh
ar

e

Frequency Cumulated share
 

Figure 69 RBCSV distribution at the rough road section S Viksmon � Östergraninge 
 

Sample results of collation of Profilograph data, truck ride data and truck driver perception of 
comfort and safety are given in earlier report sections. These results show that a RBCSV of 0.4 
% is too high as a limit value. On the other hand, 0.1 % RBCSV corresponds to the “background 
noise” on old roads, and is obviously too low to be a limit value. A reasonable limit could be 
somewhere between 0.2 % and 0.3 % RBCSV. The graph in Figure 68 shows that 3/100 of the 
old road length exceeds 0.30 % RBCSV, while 13/100 of the road length exceeds 0.20 % 
RBCSV. Since it is important to focus road repair to a limited fraction of the road network, a rea-
sonable draft limit value could therefore be 0.30 % RBCSV.  

On the rough road, 0.30 % RBCSV is exceeded on 39/100 of the length, as seen in Figure 69. 
Again, 0.30 % RBCSV is exceeded on 3/100 of the length of the old road Östergraninge - Vik-
sjö, which include some Hazardous Sites. This shows that 0.30 % RBCSV can be a good draft 
limit value. 

A statistical analysis of the data from the section from Ramsele to Ärtrik shows that 0.3 % 
RBCSV gave approximately 2.0 °/s roll rate in the test truck at the normal operation speeds on 
this road section. 
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Chapter 6. Spin-off results on traffic safety 

 

A map of accident black spots on Rd 331 is shown in Figure 28 and data recording intense truck 
vibration and high road roughness values have been presented above for a number of the Haz-
ardous Sites involved. These findings support the theory that a causal relationship between 
pavement damages and traffic accident risk.  

When taking ride measurements in the high truck, the SRA CS team clearly perceived 
unexpected high lateral forces in many curves. This indicated that the curves may be incorrectly 
banked. This suspicion was further enhanced by complaints from truck drivers. As a 
consequence of this it was decided to make some analysis of the dynamic equilibrium of 
cornering forces due to road alignment in the curves. For many curves (and straight sections as 
well), the analysis resulted in some alarming results as seen below.  

A refined analysis method was demonstrated to quickly show if a curve is correctly banked or 
not. The results confirm that many curves on the Beaver Road 331 are incorrectly banked and 
thereby hazardous.  

Data clearly show an overrepresentation of incorrect banking in left16 hand curves. The causal 
reason has been analyzed and explained.  

Several left hand curves include sections where cross slope is 0 (zero) %. These have also 
been investigated with respect to Drainage Gradient (DG), the resultant vector to cross slope 
and longitudinal grade. The results show that, on roads with modest grades, the vast majority of 
left hand curves have spots with unacceptably low DG at their entrance and/or exit, resulting in 
a high skid risk due to water ponding. Analysis on new sections on other roads confirms that this 
is a ubiquitous problem in road design. 

Finally, analysis shows that the spot repair of pavements, in one wheel track only, may cause 
hazardous split friction when braking hard at high speed (emergency baking) in wet weather 
conditions. 

                                                 

16 Sweden has right hand traffic; in the UK the problems are focused into right hand curves instead. 
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6.1 EFFICIENT ANALYSIS OF INCORRECTLY BANKED CURVES 

6.1.1 Ideal ratios of cross slope and horizontal curve radius 
As seen in section “3.3.1 Tight curves are hazardous”, road agencies worldwide have defined 
ideal ratios for cross slope versus horizontal curve radius, in order to create a dynamic balance 
to the lateral cornering force. An example of ideal ratios at the reference speed 90 km/h used in 
Sweden is given in Figure 21.  

It is not practical to relate cross slope (CS) to radius (R) when analyzing data from real roads, 
including straight sections of roads where R approaches infinity and becomes difficult to plot. 
Curvature, defined as 1000/R, is a more practical parameter for real roads since it approaches 0 
(easy to plot) on straight sections. Furthermore, curvature is directly proportional to the lateral 
cornering force. Therefore, the ideal CS to R ratios in Figure 21 has been plotted as CS to Cur-
vature in Figure 70. The green boxes in the figure correspond to a high standard of road align-
ment, whereas the orange boxes correspond to a moderate to low standard. These boxes in-
clude +/- 0.5 % tolerance limits, as implied by (complex) tolerance demands stated in the Swed-
ish road construction code [40]. The sign convention in Sweden is illustrated by a two lane road 
cross section to the left in the figure. Sweden has right hand traffic, so the focus is on the right 
hand lane. In straight road sections, the correct cross slope is -2.5 % (-3 % for roads with cold 
non-mixed pavements) and curvature is 0. In right hand curves, the absolute value of cross 
slope (banking/superelevation) should be increased where the curvature is high (radius low); the 
most extreme design value is -5.5 %.  

With +/- 0.5 % tolerance, the most extreme box goes from -6 % to -5 % CS. Significant left hand 
curves (> 0.3 % negative curvature) call for the cross slope to be tilted to the other side, thereby 
changing the CS sign. Corresponding sharp right hand curves, the most extreme box for left 
hand curves goes from + 5 to + 6 %. The CS transition between -2.5 % and +2.5 % should at 
roads with 90 km/h reference speed be carried out at negative curvature smaller than 0.3, 
corresponding to a radius wider than -3200 m. 
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Figure 70 Ideal Ratios between Cross Slope and Curvature at 90 km/h reference speed. After [15] 
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6.1.2 Reference patterns of fair alignment on real roads 
In Figure 71, 12300 values from a reconstructed section of Hw 90 are plotted. Each point repre-
sents the average value for 1 m road section, in total 12.3 km. This plot gives a reference to pat-
terns created by fair ratios between cross slope and curvature on real roads.  
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Figure 71 New Hw 90: Reference ratios between CS and Curvature, 90 km/h reference speed 
 

It is easy to identify a handful of reference road alignment “families” in the plot, as seen in 
Figure 72. Straight sections are marked “1”, low cross slope (CS) in wide right curves “2”, high 
CS in sharp right curves “3”, low superelevation in wide left curves “4”, high superelevation in 
sharp right curves “5” and cross slope transitions to/from left curves “6”.  
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Figure 72 Identifying reference road alignment families 
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6.1.3 Incorrectly banked curves on Rd 331 
If the road alignment data does coincide with the fair road alignment reference families, the road 
section is likely uncomfortable and possibly hazardous at the reference speed. 

Data from 12.3 kilometres of the old Beaver Road 331 (Ramsele - Edsele) are compared with 
data from new Hw 90 in Figure 73. In this plot, several uncomfortable and hazardous families of 
road alignment data can be identified. Note that the Curvature axis has been widened, to make 
it possible to plot data from the sharp curves on Rd 331. 

Straight sections with excessive Cross Slope (CS) are marked “7” in Figure 73. These sections 
include CS greater than the permissible banked sharp curve allowed in Sweden. These cause 
an uncomfortable ride. They are also a health risk, since they force the driver’s spine into an 
awkward twisted position making it much more susceptible to Whole-Body Vibration. These sec-
tions are also hazardous when overtaking another vehicle, as the large difference in CS be-
tween the two lanes causes large lateral vibrations if the overtaking is done with a quick lateral 
manoeuvre. On the section Nordankäl - Backe, a straight section had CS down to - 8.5 % (not 
shown here). 
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Figure 73 Comparison of data from old Rd 331 and new Hw 90 
 

Wide right hand curves with too little negative CS are marked “8” in Figure 73. These curves 
contribute to skid accidents as they do not generate sufficient lateral support to reach a dynamic 
balance when cornering in slippery conditions. 

Sharp right hand curves with high negative CS are marked “9”. These curves contribute to slip 
accidents in vehicles driving at lower speeds than the reference speed.  
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Left hand curves where the banking is tilted to the wrong side are marked “10”. These are of 
course extremely hazardous, as it is difficult to avoid skidding in slippery conditions. For heavy 
vehicles, the risk for rollover accidents is obvious. 

Sections with close to 0 (zero) % CS are marked “11”. With few exceptions, these are entrances 
or exits of left hand curves. Unless these sections happen to be in a longitudinal grade, they will 
also have a Drainage Gradient close to zero. This will cause water to pond, and the road will 
often develop local (surprising) ice spots in cold weather. These bring unacceptably high skid 
risk, so these sections should be checked for Drainage Gradient. This type of analysis is done in 
the next section of this report. 

Left hand curves with too little CS are marked “12”. These curves contribute to skid accidents, 
as they do not generate enough lateral support to reach a dynamic balance when cornering in 
slippery conditions. It is noticeable that almost none of the left hand curves have excessive 
positive CS. 

The family marked “13” can be described as “poorly synchronized CS transitions”. This family 
includes sections where CS transitions take place at a curve radius sharper than - 3200 m 
(Curvature -0.3). In practice, these are sections where the curve has started, but the 
superelevation is applied later in the curve. Or even worse; in curves where positive 
superelevation suddenly becomes negative CS before the curve is finished. This kind of road 
feature can come as a dangerous surprise to road users, unfamiliar with local hazards. The data 
families “10” to “12” may also include poorly synchronized transitions. 

Figure 73 also includes families of unacceptably sharp left and right curves on Rd 331. When 
these curves are evaluated against the acceptable risk level stated by the SRA Road Design 
Manual [15], many are even too sharp at the lower reference speeds of 70 and 50 km/h. As per 
the Tylösand declaration (see section “7.2 The Tylösand Declaration”), SRA must as soon as 
possible make sure that all of these curves gets warning signs, and should start planning for 
straighten them out. 

It is interesting to see that Figure 73 is non-symmetric. It shows that hazards are more common 
in left hand curves, than in right hand curves. 
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Figure 74 Poor road alignment cause dynamic imbalance at the Hazardous Site Roos Curve  

 

The Roos Curve in Österforsse is extremely hazardous, as can be seen in the hospital record 
plot in Figure 16. Today, the speed limit is 70 km/h through the curve. When analyzing ratios 
between CS and Curvature for Roos Curve in Figure 74, the data can be classified into several 
of the above defined hazardous families of road alignment. This non-uniform horizontal curve 
includes a minimum “radius” of about - 120 m, as Curvatures reach - 8.32. These extreme Cur-
vatures cause very high lateral forces. Considering the curve’s CS, and a lateral friction factor of 
less than 0.1 for slippery conditions, the maximum safe speed is definitely lower than 50 km/h 
as per the graphs in Figure 18. The posted speed limit is therefore more than 40 % higher than 
the safe maximum speed. Obviously, it is extremely important to maintain high road surface fric-
tion in this curve. It is recommended that this curve should be straightened out, or at least 
should have the banking very carefully redesigned, as soon as possible. (Each point in Figure 
74 corresponds to an average value over 1 m; the plot includes 500 m). 

There are two Hazardous Sites (HS) at Viksjö; one just north of the village and the other just 
south of Viksjö, as seen in the hospital record plot in Figure 75. 

The HS south of Viksjö shows three fatal heavy truck accidents at exactly the same location. In 
the flat village of Viksjö the speed limit is 50 km/h. At the south exit, the limit is raised to 70 
km/h. The road makes a short and sharp left hand curve, as it begins a long and steep downhill 
grade. Then it makes a wide right hand curve, followed by a short but very sharp left hand 
curve. This third curve also ends the grade, and the road goes over a bridge at the bottom of the 
valley. In the grade, truck drivers have lost control of their vehicles. At the exit of the third curve, 
each of the trucks have missed the bridge and made a large hole in the - obviously undersized - 
crash barrier. All of these lethal rides ended with a 20 m long and 12 m deep jump into the rift.  
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Figure 75 Hospital record plot from HS N Viksjö and HS S Viksjö [Hans Johansson, SRA] 

 
Figure 76 HS S Viksjö: Truck crash in Oct 2005 [Photo: High Coast Rescue Dept] 

 

When analyzing ratios between CS and Curvature for HS S Viksjö in Figure 77, the data can be 
classified into several of the above defined hazardous families of road alignment. The non-
uniform horizontal curves include a minimum “radius” of about -150 m, as Curvatures reach -
6.77. These extreme Curvatures cause very high lateral forces. Considering the curve’s CS, and 
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a lateral friction factor below 0.1 for slippery conditions, the maximum safe speed is about 50 
km/h as per the graphs in Figure 18. The posted speed limit is 40 % higher. 
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Figure 77 Poor road alignment cause dynamic imbalance at the Hazardous Site S Viksjö 
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6.2 IDENTIFYING HIGH SKID RISK DUE TO WATER PONDING 
Where the “Drainage Gradient” of a non-permeable road surface is lower than 0.5 %, water will 
not run off and water pools can be formed in wet weather. Water ponding, such as seen in 
Figure 78, increase the skid accident risk.  

 

Figure 78 Water ponding at a CS transition section [Photo from the UK road network survey] 

 

Road design manuals worldwide recognize the risk for water ponding and demand a minimum 
Drainage Gradient of 0.5 %.  

From a mathematical point of view, Drainage Gradient (DG) is the resultant of the Cross Slope 
(CS) and longitudinal Gradient (G) of road surface, as illustrated in Figure 79 and defined by 
Formula 8. 
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Figure 79 Drainage Gradient is resultant of Cross Slope and longitudinal Gradient 

 

22 GCSDG +=   
Formula 8, Calculation of Drainage Gradient 
 

Straight roads are generally designed with 1 to 3 % negative CS. Curves are designed with a 
superelevation up to +/-5.5 % (Sweden), +/-7 % (UK), +/-9.5 % (Norway, maintenance of 
existing roads).  

With more than +/-0.5 % CS, the DG should never drop below the minimum limit of 0.5 %. Nei-
ther straight sections, nor curves, have less than +/-0.5 % CS. So in what type of road sections 
could DG become insufficient? The Swedish road design manual [15] does not include guidance 
on this important question. The UK road design manual [54] gives a clue on the topic: 

”-Care must be taken to ensure that a minimum longitudinal gradient of at least 0.5 % is 
maintained wherever superelevation is to be applied or reversed”.  

So, critical sections are the transitions where superelevation starts or stops between straight 
sections and curves. As shown later in this section, the critical sections are further limited to 
left17 hand curves, where CS change direction and sign as they pass through 0 (zero) %. 

An important question is: ”-How can unacceptably low DG be avoided at entrances and exits of 
left hand curves in flat terrain?” Again, the Swedish road design manual does not give guidance, 
while the UK manual does: 

”-In flatter areas, the vertical alignment should be manipulated by the introduction of vertical 
curvature simply to achieve adequate surface water drainage”. 

The solution presented in the UK manual, is to construct local vertical curves so there are at 
least 0.5 % longitudinal Gradient in the sections where CS is close to 0 % as it changes sign. To 
create a 0.5 % slope over 50 m length, an elevation of 0.25 m is required. This is a reasonable 

                                                 
17 In the UK the opposite is true; to right hand curves. This is due to the left hand driving in the UK. 
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design option when building a new road, where profiling is made by local material such as 
gravel and rock fill or by cut section. It is important to use smooth gradient changes, so the ride 
doesn’t get bumpy at highway speeds. 

There is also another solution. Where there is a grade before the left hand curve starts, the CS 
can be moved into this grade. Thereby the CS can make a transition from -2 % to +2 % long 
before the left hand curve starts. One drawback with this method is that a longer road section 
will have somewhat longer drainage path, thereby also a slightly larger water film depth. 

A third option is to minimize the length of road where the CS is close to 0 %. This can be done 
by varying the “tilt rate”. The transition from i.e. -2 % to -0.5 % can have a low tilt rate, from -0.5 
to +0.5 % a higher tilt rate, and from +0.5 % to +5.5 % the tilt rate is slow again. Road sections 
designed with this method should be checked to ensure that it does not excite significant roll 
vibration. 

A fourth option to reduce water ponding and thereby the skid risk, is to construct a permeable 
pavement in the sections where DG is low. 

6.2.1 Low Drainage Gradient gave an unacceptable skid risk at HS N Viksjö 
The northern HS at Viksjö shows an unusually high number of accidents leading to hospital 
care, as seen in Figure 75. The curve is sharp and induces high lateral cornering forces; the 
curvature reaches -5.12 (radius tighter than 200 m). Despite this fact, the maximum allowed su-
perelevation of 5.5 % has not been utilized, as the curve only has about 4 % in the northbound 
direction. Furthermore, it has a warping Rut Bottom Cross Slope Variance of 0.54 %, which is 
significantly above the above proposed “warping limit” of 0.30 % RBCSV. In addition to these 
features, at the southern entrance of the curve, the Drainage Gradient is below the 0.5 % mini-
mum limit value on a long section as shown in Figure 80. 
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Rd 331, Viksjö - Östergraninge
Curve at the north of Viksjö, RDB ca 32000

Skid risk: If the Drainage Gradient doesn´t exceed 0.5 %, water pools will be formed
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Figure 80 Extreme skid risk due to low Drainage Gradient at entrance of the left curve at HS N Viksjö 
 



 Page 108  

 

ROADEX III The Northern Periphery Research 

6.2.2 Low Drainage Gradient gave unacceptable skid risk at HS S Viksjö 
Figure 76 shows a photograph of a truck accident in front of the bridge at southern Hazardous 
Site in Viksjö. As previously presented, this site has poorly banked curve and a low Drainage 
Gradient at the exit of the sharp left hand curve (in front of the bridge), as seen in Figure 81. 
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Figure 81 High skid risk due to low Drainage Gradient before the bridge at HS S Viksjö 
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6.2.3 Extreme skid risk at HS Björknäset 
Hazardous Site Björknäset shows an unusually high accident number, as seen in Figure 28. At 
this site, the Drainage Gradient is low for hundreds of metres, see Figure 82. This causes water 
ponding and the formation of ice during the winter, bringing extremely high skid risks. This haz-
ardous geometry may be explained by the road section being very weak so the pavement has 
collapsed totally. 
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Figure 82 Skid risk due to low Drainage Gradient over hundreds of metres at HS Björknäset 
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6.2.4 Extreme skid risk at HS Helgum 
Hazardous Site Helgum shows an unusually high accident number, as seen in Figure 28. At this 
site, the Drainage Gradient is unacceptably low for hundreds of metres, see Figure 83. This 
causes water ponding and the formation of slippery ice during the winter, bringing extremely 
high skid risks. Another problem is excessive Cross Slope (CS). In the junction with Rd 950 at 
RDB distance 86/422 km, Rd 331 makes a curve with CS up to + 6.3 %. In this 70 km/h section, 
a CS of + 2.5 % is sufficient with respect to current curvature, as per the Swedish road design 
code. As seen in accident records, many vehicles turning in the junction with Rd 950 are skid-
ding. 
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Figure 83 Extreme skid risk due to low Drainage Gradient on one hundred meter at HS Helgum 
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6.2.4 Skid risk at HS Åsäng 
Hazardous Site Åsäng shows an unusually high accident number, as seen in Figure 28. As 
shown in a previous section, the pavement on this site is significantly deformed. Just before the 
section of the crash photograph in Figure 63 (taken at RDB section about 11/400 km), the 
Drainage Gradient is very low as seen in Figure 84. 
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Figure 84 Unacceptably high skid risk due to too low Drainage Gradient at HS Åsäng  
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6.2.5 Many areas with unacceptable skid risk from Ramsele to Åkerö 
South of Ramsele, there is a 18.5 km long road section that, despite low traffic volume, shows 
an increased accident number, as seen in Figure 28. This section has a lot of skid risk areas 
with insufficient Drainage Gradients, as seen in Figure 81. 

Skid risk: If the Drainage Gradient doesn´t exceed 0.5 %, water pools will be formed
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6.2.6 Also new roads have skid risk areas due to too low Drainage Gradients 
For reference purposes, Drainage Gradient (DG) was calculated for a 12.3 km new section on 
Hw 90 north of Sollefteå. This section had been reconstructed totally, after the study by Ahlin et 
al (2000) [3]. However, the resulting DG plot was surprising and gave some very valuable 
knowledge. As seen in Figure 86, the new road section has 12 skid risk areas; one per km. The 
black Curvature trace clearly shows that all skid risk areas are located at the entrances or exits 
of left hand curves (having negative curvature). No skid risk areas can be seen at right hand 
curves or on straight sections. Tests on data from highways and expressways in various parts of 
Sweden demonstrate that this new knowledge on skid risk hot spots has a generic application. 
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6.3 FRICTION ISSUES DUE TO LOW OR VARIED MACROTEXTURE 

6.3.1 Low wet friction at the extremely Hazardous Site Stavreviken 
The spot with most skid accidents in the Västernorrland County is HS Stavreviken. Numerous 
skid accidents take place there every year. In one week there were three accidents. In 
southbound direction, the road makes a long and steep downhill grade, finished by a hairpin 
curve over a railway. The skidding incidents take place at the end of the grade, at about RDB 
section 5/380 km, just before the hairpin curve begins. Most skidding vehicles crash within a 
zone of 10 metres length. The SRA Central Region is planning to solve the troubles with HS 
Stavreviken by building a 2.1 km new road and railway bridge section at a cost of about 3 M€ 
[71]. 

Mahone (1975) [55] showed that the friction in hard emergency braking at highway speeds on 
wet road surfaces is mainly determined by the surface Macro Texture (MaTx). At HS Stavre-
viken, all vehicles must brake hard to keep speed low in the grade. Many vehicles brake with 
significant tyre slip, thereby polishing the road surface. In Figure 87, Macro Texture values from 
left and right wheel track are reported from HS Stavreviken. As seen by the graphs, the values 
seldom exceed the benchmark minimum level of 0.6 mm.  

A low cost action to increase the Macro Texture and reduce the skid risk in wet conditions could 
be a double surface dressing. There are also extremely skid resistant special surfacings avail-
able. One such surfacing, based on steel slag, is currently being tested in Dalarna County within 
the SRA Central Region [66]. A pair of speed-activated “Your speed” displays could be benefi-
cial at the top of the grade. If initial speeds were lowered, the need for braking in the grade 
would be much less. 

RDB 5216 m at junction w Rd 684 (on which Rd 331 then is guestroad) in Stavreviken
0 m at junction with E4

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

5200530054005500560057005800
RDB Distance [m], lane in reverse direction

M
ac

ro
 T

ex
tu

re
 M

PD
 [m

m
]

MPD Right MPD Left Minimum Macrotexture
 

Figure 87 Insufficient Macro Texture at HS Stavreviken 
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6.3.2 Hazardous Split Friction due to patch repair in one wheel track only 
Split Friction (SF) is an extremely hazardous condition, known to cause instability phenomena 
such as jack-knife and trailer swing when braking hard with heavy vehicle combinations [33]. SF 
happens when the friction is much lower in one wheel track than in the other. SF may be difficult 
to recognize when cruising or braking normally. However, it is detrimental when (emergency-) 
braking hard. When doing so, the vehicle rotates over the wheel track offering high friction. 
ABS-brakes reduce the instability problem, but at the price of a longer braking distance. An ex-
treme example of SF is ice in one track and bare asphalt in the other. 

SF may occur after a patch repair in one wheel track only. Such a repair can result in large 
differences in colour, as well as in MaTx, between the wheel tracks. This can create very high 
SF condition, especially in mornings after a night with temperatures slightly below 0 °C. When 
this happens the road surface can become covered with thin ice. As the sun rise, its radiation is 
absorbed by the black bitumen-rich patches so the ice on these thaws quicker than the greyish 
old asphalt in the non-patched track. When braking hard on such split friction surface, the result 
may be a skid into the ditch or over to the opposite side of the road. 

A photograph from HS Meåstrand is shown in Figure 61; take note of the glare slick patch repair 
in the right wheel track. Profilograph results for the site’s MaTx are showed in Figure 88. The 
right side vertical scale is for MaTx, while the left is for the turquoise Split Friction risk indication 
trace. SF risk indication is defined as difference in MaTx in the wheel tracks, divided by the low-
est MaTx of the two tracks. While there are several sections with low MaTx in the right wheel 
track, there are fewer sections with high SF risk. The most hazardous section is at 125/770 km. 

On investigation, Split Friction due to asphalt patch repair has been identified as a likely causal 
factor behind five skid accidents within two weeks after patch repair at a curve on Hw 61 in 
Värmland, Sweden. 

 
 
Figure 88 Macrotexture values indicating low and split friction (due to patch repair in only one track) 
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Chapter 7. Ethical aspects on safety issues 

 

7.1 VISION ZERO FOR ROAD SAFETY 
“Vision Zero” is the basis for all modern road safety work in Sweden. The approach was ratified 
by the Swedish Parliament in 1997, and has resulted in changes to road safety policy and the 
work undertaken.  

Since Vision Zero was established in Sweden, fewer people have been killed on roads. Now the 
ideas behind Vision Zero have also had an international breakthrough. 

Vision Zero is an image of a future in which no one will be killed or serious injured. It is both an 
attitude to life and a strategy for making a safe road transport system. Road safety in the spirit 
of Vision Zero means that roads, streets and vehicles must be much more adapted to human 
capacity and tolerance. 

The responsibility for safety is shared between those who design, and those who use the road 
transport system. 

7.2 THE TYLÖSAND DECLARATION 
The Tylösand Declaration lays down the principal rights of citizens for road traffic safety. These 
rights serve to protect them from the loss of life and health caused by road traffic. They rest on 
the general assumption that no road user wishes to harm either himself or herself or any other 
fellow human being, whatever the circumstances under which they are using the roads.  

The Declaration was signed at the annual conference in Tylösand 2007, by Jörg Beckmann 
(Executive Manager of European Transport Safety Council), Åsa Torstensson (Sweden’s 
Minister on Infrastructure), Ingemar Skogö (Director-General of Swedish Road Administration), 
together with other decision makers and experts within Europe as well as from other continents.  
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The Declaration includes five articles: 

1. Everyone has the right to use roads and streets without threats to life or health. 

2. Everyone has the right to safe and sustainable mobility: safety and sustainability in road 
transport should complement each other. 

3. Everyone has the right to use the road transport system without unintentionally imposing 
any threats to life or health on others. 

4. Everyone has the right to information about safety problems and the level of safety of any 
component, product, action or service within the road transport system. 

5. Everyone has the right to expect systematic and continuous improvement in safety: any 
stakeholder within the road transport system has the obligation to undertake corrective 
actions following the detection of any safety hazard that can be reduced or removed. 

7.3 PRIORITIZING VARIOUS ROAD SAFETY IMPROVEMENTS 
It is well known, that one, or several, of the following factors are involved in the vast majority of 
traffic accidents: 

1. Drugs, including alcohol, narcotics et c. 
2. High speed. 
3. Not using a seat belt. 
4. Suicide. 

Thus, it is rational that most road safety improvement actions should be focused on reducing the 
above human factors, mainly no 1 - 3. 

However, acting rationally does not always mean the same as acting ethically. 

The above listed factors have much in common: most road users are aware of risks associated 
with factors listed; they have personal control over each of the factors; and, finally, road users18 
have decided to expose themselves to the risks. Taken all together, this means that road users 
should be able to take large responsibility for these risks. 

Below is a list of other factors involved in traffic accidents. These also have much in common: 
many road users are unaware of them and/or their association with risk; it is difficult for road us-
ers to exercise control over the associated risks; road users have generally not decided to ex-
pose themselves to the risks. Taken all together, this makes it difficult for the road user to take 
responsibility for this second list of risks. However, a fourth common feature is that the road 

                                                 
18 An exception is the second party, suffering from actions by the causal individual. One example is an 
“innocent” driver crashing due to a drunk driver over-speeding at the wrong side of the road. 
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agency is able to exercise control over all of the factors. The control option makes it obligatory 
for road agencies to take responsibility for the risks listed below: 

1. Longitudinal or lateral roughness, causing ride vibration related phenomena such as 
driver fatigue, bump steer and loss of friction due to weight transfer. 

2. Bumps, without a warning sign. 
3. Poorly banked curves, not giving relevant lateral support for cornering vehicles. 
4. Pavement local areas with too low drainage gradient, where slippery water puddles 

ponds and in the winter freeze to ice spots. 
5. Split friction between left and right wheel tracks during (hard) emergency braking from 

high speed and on a wet (thin ice) surface, caused by different texture after spot repair in 
only one wheel path. 

Considering the above discussion on the individual’s responsibilities versus the road agency’s 
responsibilities, it may actually appear more ethical to spend road agency funding on road 
repair, rather than on rational campaigns aimed at reducing drunk driving, over speeding and 
reminding to buckle up. It seems important to discuss this balance further, both in- and outside 
road agencies. 
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Chapter 8. Serious and useful findings 

 

8.1 RIDE VIBRATION SHALL BE PREVENTED AT THE SOURCE 

The Rd 331 case study has shown that many professional truck drivers are likely to be exposed 
to a daily vibration exceeding the EU Action Value A(8) = 0.5 m/s2. Timber hauliers like 
Brorssons Åkeri AB are now obliged, by law, to carry out a risk assessment and implement 
organizational and/or technical actions to minimize the driver´s vibration exposure. These 
actions will bring significant costs to hauliers and their customers in the forest industry. 

Why is truck ride vibration a problem at all? Shouldn’t vehicle manufacturers be able to isolate 
all ride vibration? Road managers are likely to ask these kinds of questions, and more, after 
reading the daily vibration exposure results from this research project. 

The answer is that if feasible technological solutions were at hand, they would already be a suc-
cess on the market. The vehicle industry, unlike the average road agency, spends very large 
resources on product development and their engineers work hard to continually develop new 
solutions and improvements to overcome perceived problems. However these organisations 
work within many constraints, such as commercial aspects, handling and stability. The net effect 
of their improvements to vibration in vehicles is therefore typically small, when compared to the 
potential improvements by road repair. A good example of this can be seen in the case study, 
where the truck driver seat vibration did not change after a missing chassis suspension damper 
bush had been replaced (see section 5.2.6 The broken truck suspension bush had no significant 
effect).  

The SRA has thousands of kilometres of roads in a condition similar to Beaver Road 331, used 
for the case study. Thousands of kilometres of roads are likely to be in a similar condition also 
across the ROADEX partner areas. The truck response recorded on Rd 331 includes very high 
roll vibrations at frequencies below 5 Hz. The Handbook of Vehicle - Road Interaction [52], 
states that roll motions at frequencies under 5 Hz are not common when driving heavy trucks on 
roads with “normal” roughness and at normal speeds. This implies that roads in this kind of con-
dition should be considered as non-compatible with normal heavy vehicles. 

Article 5.1 in directive 2002/44/EC states: “Taking account of technical progress and of the 
availability of measures to control the risk at source, the risks arising from exposure to 
mechanical vibration shall be eliminated at their source or reduced to a minimum”.  

A similar conclusion was made in the five-year US research program “Ride Quality of Commer-
cial Motor Vehicles and the Impact on Truck Driver Performance”, performed by leading re-
searchers, road authorities, vehicle manufacturers, hauliers and commercial drivers; Vibration 
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must be eliminated at source through effective road maintenance rather than merely dampened. 
See section “3.1.6 Ride vibrations have a negative effect on traffic safety”. 

8.1.1 Long wave unevenness require improved road repair methods 
The case study showed that low frequency, below 3 Hz, truck ride vibration is a serious 
problem. Low frequency vibration is difficult to reduce, both in today’s vehicle fleet and with all 
currently demonstrated truck suspension solutions.  

Because of this road managers should pay particular attention to the prevention, and repair, of 
those forms of road damage that cause low frequency ride vibration. Vibration at 0.5 - 3 Hz 
frequencies relates to road unevenness with 5 - 40 m long wavelength. Asphalt pavers cannot 
repair such long wave uneveness efficiently, since the paver only “rides along” in waves longer 
than the paver itself. Repair of long wave unevenness requires a more advanced approach than 
seen in many current road maintenance practices. Milling machines and asphalt pavers must 
therefore be “forced” by machine control systems to follow a carefully engineered repair design. 
This type of solution relies on two prerequisites: 

1. A carefully engineered (computer aided) design of the geometric asphalt repair works. 

2. Asphalt pavers being operated with a suitable machine control system, such as used 
when repaving airfield runways. 

Current standard road repair practice cannot repair long wave unevenness efficiently. 

8.1.2 Excessive Cross Slope is an ergonomic problem 
Based on the testing carried out in the current trials it appears likely that many professional 
truck drivers in the Northern Periphery of Europe are being exposed to higher health risks than 
truck drivers in central Europe. Not only is the ride vibration level high, but many truck drivers in 
the Northern Periphery may also be sitting in an awkward side sloping position due to excessive 
pavement cross slope (CS) on straight road sections. In the case study on Rd 331, many 
straight road sections had a CS that exceeded the maximum superelevation/banking allowed in 
the tightest horizontal curves. This excessive side slope causes the spine to be twisted, which is 
not only uncomfortable, but also makes the back more susceptible to Whole-Body Vibration 
exposure. Excessive CS has not been reported as a systematic problem in central Europe. 

8.2 BUMPS ARE MOST UNHEALTHY 
Transient vibration (shock) is much more detrimental to health than stationary vibration. Many 
bumps give shocks that can be compared to those recorded on city bus drivers’ seats when 
they driving at 30 - 50 km/h over traffic calming speed bumps with 1 dm height. The worst 
bumps in the current tests were located on small roads, such as on the road to the Sawmill in 
Graninge. These bumps, when driven at low speeds of about 40 km/h, exposed the truck driver 
to spinal compression stress Sed of over 0.5 MPa. This stress level corresponds to health risk. 
Also on the “main road” Rd 331, truck drivers drove over many bumps that excited significant 
transient vibration. These bumps were due to settlement at old culverts, poorly reconstructed 
culverts and settlements at bridge joints. 
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8.3 ROLL VIBRATION REQUIRE SPECIAL FOCUS 

Many of the Hazardous Sites in the case study were found to have local severe pavement edge 
damages, characterized by high Rut Bottom Cross Slope Variance (RBCSV). 

Repair of these pavement damages will minimize lateral vibration in trucks. (Truck suspension 
systems cannot isolate such vibration). This kind of road repair will bring better health and 
safety to professional truck and bus drivers. It will also improve safety for fellow road users, due 
to the reduced risk of collision with skidding trucks. 

Road damages resulting in high variance of Rut Bottom Cross Slope (RBCSV) has been 
identified as a critical factor behind truck rollover accidents by the group analysing lethal 
crashes in the Central Region of Norway. Repeated lethal crashes (2005, 2006) have occurred 
in an “eggshaped” curve at Smalåsen on road E6, where a culvert bump reduced the Cross 
Slope in a section where the curve is tightened (and the lateral force increased). Deformed 
pavements have also been found to be a cause in accidents, as the deformations affect the driv-
ing stability of the vehicles. Deformations have been found very hazardous to cars with low pro-
file tyres, motorcycle traffic and at slippery road conditions [72] [Personal communication with 
Mr Bård Øien, head of the crash investigation group in Central Norway]. 

8.3.1 Lateral vibration 
Lateral acceleration is commonly recognized as a key parameter for vehicle driving stability, and 
thus for traffic safety. This is especially relevant on slippery surfaces, where the lateral friction 
forces are small. When a vehicle changes its roll angle quickly, the roll motion is accompanied 
by lateral acceleration. Results from the case study show that severely deformed pavement 
edges are a serious safety hazard, as they may result in lateral acceleration forces comparable 
to the lateral forces experienced when travelling around a horizontal curve. 

The high lateral vibration seen in the case study raises a question whether it is sufficient to have 
truck suspension systems that deal with vertical vibration alone. There seems also to be a 
similar need to prevent and/or isolate lateral vibration. This is a significant challenge to truck and 
seat designers, since the conflicts with traffic safety are obvious. Any additional isolation 
systems to the present provision will however increase the deadweight of the vehicle and thus 
reduce the payload that can be carried, thereby increasing the number of trucks necessary to 
meet a given transport need. The development of new efficient solutions will cost money, and 
new components also bring new costs. The net effects of this is that new systems for isolation of 
lateral vibration are likely to be accompanied by increased transport costs, and increased 
number of trucks on the roads. 

The conclusion is that the cross slope variations on badly deformed EU Northern Periphery 
roads makes them incompatible surfaces on which to drive normal heavy vehicles. Such road 
sections should be repaired as soon as possible. 
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8.3.1.1 Tramp-related polishing creates extremely slick areas 

Road roughness with short (0.7 - 3 m) wavelengths causes truck tyre resonance. Roughness 
with these short wavelengths often has a low coherence between the left and right wheel track. 
This means, for example, that the left track may have a short bump whilst the right track may be 
flat, or even have a depression. This can result in the wheel axle starting to roll, accompanied 
by lateral forces and an oscillating motion between road and tyre. Such “tramp-motion” gives a 
polishing effect which, after accumulated truck passes, can make the road extremely slippery. 
Short wavelength road roughness is therefore a road safety issue that should be controlled and 
kept below safe levels. This kind of road roughness can be repaired by a simple asphalt overlay. 

8.3.2 The change in climate calls for increased repair of RBCS damages 
Change in climate is likely to make freezing and thawing more frequent in the Northern 
Scandinavia. Data from year 1961 - 1990 (left) can be compared with a computer modelled 
scenario for 2071 - 2100 (right) in Figure 89. The result shows that the number of days with 
temperature shifts of around 0 °C will increase. 

 
Figure 89 Freezing and thawing Dec - Jan; increased number of times temperature passes zero [46]. 

Slippery “black ice” occurs more frequently at temperature shifts of around 0 °C, than at very 
cold temperatures. Thus, extremely slippery conditions will become more and more common on 
the rough roads in the Northern Scandinavia.  

The combination of slippery surfaces and pavement edge damages results in lateral forces and 
can be very dangerous. Thus, the need for repairing Rut Bottom Cross Slope Variances 
(RBCSV) will increase as climate change continues. 

A relevant example is the strong increase in road crashes in the High Coast Ådalen (Sollefteå, 
Kramfors and Härnösand) in SRA Central Region, as seen in Figure 90. In the period from 1 
January to 10 March, the number of crashes has increased from 18 to 23 during the 10 year 
period 1998 - 2007. Given the mean value of 23 in the past ten years and considering the 
natural variance of this statistic (the standard deviation over the past ten years was 3.7 
crashes), there was over 95 % probability of less than 31 crashes in 2008. However, the 2008 
outcome was 42 crashes. This is an increase by 109 %, as compared to the ten years before. 
The Rescue Leader had reported poorly maintained roads as a causal factor behind more than 
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50 % of the crashes in 2008, while 25 % also involved deep ice ruts. The High Coast Rescue 
Department also see a clear relation to the extreme and unsteady climate. Most crashes were 
single car accidents. Most of these took place on straight road sections in daytime, and many of 
the crashed cars were driven by women. [Personal communication with Peter Carlstedt, Head of 
High Coast Rescue Department] [73].  

Road traffic crashes in the High Coast 
Sollefteå, Kramfors and Härnösand
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Figure 90 A strong trend of increased road traffic crashes 



 Page 124  

 

ROADEX III The Northern Periphery Research 

8.4 SOME ROADS ARE MORE HAZARDOUS – NOW WE KNOW WHY 

The objectives for this project focused on health issues but the work also gave valuable spin 
offs in safety issues. From the overall accident records, it is obvious that there is still a long way 
to go before “Vision Zero” can be reached. The findings in this study however show that there is 
great potential to reduce accidents by make existing road surfaces safer.  

Antiskid systems in cars were recently recognised to be as important pieces of safety equipment 
as seatbelts [44]. This confirms skidding to be a common and very serious safety risk. Seatbelts 
are accepted as being a very successful safety aid, yet society still continues its efforts to pre-
vent traffic accidents. In the same way, society should not rely on antiskid systems as the sole 
solution to skid problems. Greater efforts should still be made to make road surfaces more skid 
resistant. After all, a vehicle’s braking distance is much shorter on a skid resistant surface, than 
in a similar vehicle with antiskid system braking on a slippery surface. 

Technological advances in the future vehicle fleet are likely to make large improvements to 
traffic accident outcomes. However these solutions are also likely to require even better friction 
than current road surfaces are offering, in order to make use of the full safety improvement 
potential. Obviously, it is time to start making the road network more skid resistant! 

8.4.1 Incorrect banking cause dynamic imbalance in curves  
Many of the Hazardous Sites in the case study were found to have incorrectly banked curves, 
causing dynamic imbalance when cornering. 

The case study demonstrated that plots of Cross Slope (CS) versus Curvature can be useful 
tools when analyzing dynamic balance in curves, using similar safety margins to those 
employed in designing new roads. Groups of data, “families”, with safe and comfortable road 
alignments in such plots were identified in Figure 72. Data outside these families are from sec-
tions with incorrect Cross Slope / Superelevation. 

8.4.1.1 Evaluating / redesigning old roads is different from designing new roads  

When designing new roads, specified CS values are used; i.e. 2.5 %, 4 % and 5.5 %. When 
evaluating or repaving old roads however using such fixed values has a poor cost-benefit return 
as it can be very costly to modify existing CS. For modest Curvatures (absolute values ranging 
from 1 to 3 for a reference speed of 70 km/h), the magnitude of CS between 2.5 % and 5.5 % 
are of low to moderate importance for safety as well as for comfort. However, it is very important 
that the CS does not vary to the extent that high vehicles start to roll, as measured by the new 
RBCSV parameter.  

The red dots in Figure 91 are inside the tolerance box for the design of new 70 km/h roads, 
whereas the green stars are outside the box. The green stars however represent a road section 
offering a safer and more comfortable ride, than a section represented by the red dots.  
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Figure 91 What is worse on an old road: CS outside tolerance boxes, or high RBCS variance? 
 

8.4.2 Large hydroplaning risk at left hand curves, also at new roads 
Where the road surface Drainage Gradient (DG) is lower than 0.5 %, water will not run off the 
road and water pools will be formed in wet weather. Water ponding, such as seen in Figure 78, 
increases the risk of skidding accidents. 

Many of the Hazardous Sites in the case study were found to have DG lower than the 0.5 % 
lower limit used in road design manuals worldwide. The case study demonstrated that 
entrances and exits of left hand curves are hot spots for a low DG. The reason of this was 
explained.  

A further finding was that even new roads had been designed with very low DG at many left 
hand curves, thereby creating an unacceptable skid risk. 

Low DG was found to correlate somewhat with pavement deformation in terms of high RBCSV 
and high IRI (the details have not been shown in this report). This indicates that water on the 
road, and by implication within the pavement itself, can hasten permanent deformation. Keeping 
DG sufficient is therefore a prequisite for keeping the service life time costs to manageable 
levels. Insufficient DG can bring unneccesary road agency costs through deformation. 
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8.5 LOW AND VARYING MACRO TEXTURE CAUSE SKID ACCIDENTS 
The location with most skid accidents in the Västernorrland County road network is HS Stavre-
viken on Rd 331. Numerous skid accidents take place there every year; in some cases several 
accidents take place over a few days! Macro Texture values from HS Stavreviken are generally 
below the minimum level of 0.6 mm. A low cost action to reduce the skid risk at the site could be 
to make the road surface more skid resistant. A surface dressing can often give a very good ef-
fect in terms of increased friction factor. The texture of the existing aggregate may also be reju-
venated by ultra-high pressure water cutting, as investigated by Pidwerbesky & Waters (2008) 
[63]. However, the most efficient action is to prevent polishing, by careful selection of polish-
resistant aggregates for those sections with high polishing energy, i.e. tight corners, downhill 
end of grades, roundabouts, and junctions et cetera. Using steel slag as asphalt aggregate 
could also be one cost effective solution [66] [67]. 

Split Friction (SF) is an extremely hazardous condition, when the friction is much lower in one 
wheel track than in the other. SF may be difficult to recognize when cruising or braking normally. 
However, it can be detrimental when braking hard in an emergency. When doing so, the vehicle 
tends to rotate over the wheel track offering high friction. SF may occur after a patch repair in 
one wheel track only. The case study demonstrated the use of a new Split Friction risk 
indication parameter, based on Macro Texture data from the laser/inertial Profilograph. 

8.5.1 Double surface dressings have better Mega Texture 
It is well known that double surface dressings give off less noise than single surface dressings 
[65]. However, there is a myth that the noise difference is due to the lower Macro Texture on 
double surface dressings. The true causal factor is that the double surface dressings have less 
Mega Texture (MeTx) than single surface dressings. Lower MeTx levels result in reduced inte-
rior and exterior noise, due to reduced tyre vibration. The reduced tyre vibrations are also likely 
to reduce Hand-Arm Vibration to vehicle operators and improve friction. These benefits of dou-
ble surface dressings are not generally recognized yet, but they are likely to become more ap-
parent with the increasing use of pavement texture analyses. 

8.6 RETHINK CULVERT WORKS 
The case study showed that culverts can be critical locations for bumps, giving poor ride quality 
and health damage to the spine. There are three problems. First, current culvert repair practices 
can be poor resulting in centimetre-deep initial unevenness immediately after repair. Secondly, 
poorly compacted backfill may add settlement of several cm within a couple of years. Third, 
culverts have been found to collapse at a fraction of the design age. This brings unacceptable 
costs to taxpayers. 

8.6.1 Poor culvert construction practice 
A 6 cm deep hollow appeared immediately after constructing a new culvert on Rd 331 in 
Gammelmo. The cause of this initial bump is likely to be found in poor construction work, rather 
than in deficiencies in the road culvert installation code. It is most unlikely that such a large 
settlement could occur in an established road embankment unless the construction work 
(material selection, compaction et cetera) was poor. 
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8.6.2 Poor culvert-related road surface maintenance management 
There is a need for an improved maintenance regime for culverts. Many culverts on the Beaver 
Road 331 collapsed during the winter, making the repair even more difficult. “Everybody” knows 
that there will be settlement when a culvert is constructed or repaired, due to difficulties in the 
compaction of the thick backfill, differences in material properties, etc. The case study shows 
however that the resulting bumps due to such settlements are totally unacceptable for road 
users, in terms of comfort, health and traffic safety. There a clear need for robust management 
of bumps at culverts. Road users can probably be expected to cope with a culvert bump for a 
few months. However, it is a modest demand that culverts should be inspected for road 
roughness, in the first and the second year after reconstruction, so that repair of any local 
roughness can be carried out in a timely fashion where necessary. It is recommended that a 
culvert repair should always be followed by systematic roughness inspection and additional road 
repair where necessary. 

8.5.3 Water-piping in permeable culvert foundation beds 
Culverts manufactured with Portland Cement Concrete (PCC) are usually manufactured for a 
design life of up to 100 years. It is therefore surprising that so many apparently sound concrete 
culverts need to be reconstructed within only 5 - 20 years after their installation. As seen on Rd 
331, a common failure mode is a full collapse, caused by water piping in the soil below the cul-
vert. This shows a need for a revision of the culvert design code. Can water really be expected 
to flow within a culvert, when the culvert itself is founded on a permeable gravel bed at the bot-
tom of the culvert ditch in low-permeable soil (so water can pipe its way beneath the culvert), as 
seen in Figure 92. Should not the foundation need to be made low-permeable? These are ques-
tions that culvert experts should consider.  

 

Figure 92 Section of a culvert on its permeable foundation bed [40] 

Culvert (Permeable) foundation bed 
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Chapter 9. How to use the new insight 

 

This chapter sets out recommendations for stakeholders across in Northern Periphery, from 
vehicle manufacturers to road agencies, based on the project results. It is hoped that these will 
be accepted in a constructive fashion, improving the present situation for the benefit of all. 

9.1 HAULIERS MUST MONITOR DRIVERS WBV EXPOSURE 
The daily exposure value A(8) for Whole-Body Vibration (WBV) must be determined for truck 
drivers. The value should be representative of year round operations and measurements should 
include driving during winter. In good winter conditions, the road can be smoother than in the 
summer. Conversely poor winter condition, through poor road maintenance, can result in 
significantly higher ride vibration. The A(8) value will therefore be depending on the road main-
tenance standard, both in summer (pavement condition) and in winter (snow ploughing). A fur-
ther factor to be considered is vibration when driving on road sections under reconstruction. 

Discussions should be held with the owners of local roads in poor condition, such as the access 
road to the Graninge Sawmill, regarding the condition of the road. If the worst bumps on the 
Graninge access road are not repaired, it may be necessary to close the road to heavy trucks. 

Where alternative routes are possible, a longer route with lower roughness / vibration could be 
an option. An example in the case study is the smoother route on Hw 87 - Hw 86. This route 
could be used instead of the rougher, but shorter, Rd 331. An important question that arises 
here is “Who is prepared to pay for the additional costs for the longer route”? How can 
competing truck hauliers be equally treated? 

An efficient tool to reduce WBV on roads with excessive shortwave roughness is tyre pressure 
control or Central Tyre Inflation (CTI) systems. (CTI cannot isolate long waves). Using CTI it is 
possible for the driver to change the pressures in the tyres of the vehicle while driving, and this 
has proven to reduce WBV by 8 % on four test roads in central Sweden. 

In the case study, a chassis suspension damper bush was out of order, as seen in Figure 30, 
without anyone being aware of the problem. This lack of detection indicates a need for improved 
vibration control in vehicles in truck fleets. 

Hauliers in the Northern Periphery are recommended to use special winter tyres. Brorssons 
Åkeri AB use the new Michelin XFN+ winter tyre on the steer axle, offering 10 % better side 
friction against the road surface and 5 % shorter braking distance.  
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9.2 DEVELOPING USEFUL NEW VEHICLE TECHNOLOGY 
On-board vibration loggers could be useful for hauliers, especially as they are obliged by law to 
assess the risks to their drivers from vibration exposure. One problem with seat pan mounted 
automatic logging systems is that the driver’s ingress and egress may cause data artefacts 
(false “shocks”, resulting in unacceptably high Sed values), as discussed by Mansfield & Newell 
(2004) [59]. A more robust solution could be to have the vibration sensor at the cab floor, and 
calibrate it to predict seat pan vibration. This may require a calibration that takes account of the 
driver’s weight, and should be further investigated. The vibration logger could also be managed 
by a condition stating that vehicle speed must exceed a specified minimum, e.g. 5 km/h, before 
vibration data is stored.  

As seen in the case study, many EU Northern Periphery roads give high lateral vibration. 
Currently heavy vehicles are not so good in isolating lateral vibration. Increased efforts on 
preventing and isolating lateral vibration could therefore be beneficial. The potential use of 
MagnetoRheology (MR) technology in trucks should be further investigated. However it is 
important not to implement solutions that increase bounce, when decreasing roll.  

There is a need for a declaration of a vehicle’s vibration emission value to be made, so that 
drivers can be in a position to request the most appropriate truck to be purchased. A general-
ized test is defined in the EN 1032 standard [57]. 

Road profile data from laser/inertial profilometers can be used to develop even better trucks in 
the future. At the date of writing, Profilograph data from Rd 331 is being used in a road simulator 
hydraulic test rig at Volvo 3P. Figure 93 shows a photograph from a simulation of a very rough 
road, causing bounce vibration as seen by the photographed truck vertical ”traces”. The simula-
tion shown was of obviously made on a road without pavement edge damage, otherwise roll 
traces would have been seen as well. Severely damaged road sections, such as at HS Åkerö on 
Rd 331, may require road simulators to have larger hydraulic ranges than the current versions. 

 

Figure 93 Truck ride vibration tests in a hydraulic road simulator [Photo: Volvo 3P] 
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9.3 IMPROVING ROAD TRAFFIC CRASH INVESTIGATIONS  
A wise man said: “When investigating road traffic crashes, it is important to define a clear 
objective. Investigators trying to identify who to blame, tend to search after deviant behaviour. 
Investigators trying to understand normal road users need for better technology and 
infrastructure, tend to search after repeated patterns”. Which of these strategies has the best 
potential to support improvements into a safer future road transport system? 

As seen in the case study results, each of the Hazardous Sites at Rd 331 show remarkable 
properties in the laser/inertial Profilograph road condition measurement. With exception of 
crashes with obvious causes, such as suicides, crash investigators should study pavement 
profilometer data on a routine basis.  

Key safety parameters should include Cross Slope (CS) by magnitude and undesired variance 
(RBCSV), dynamic imbalance due to suboptimal combinations of CS and Curvature in 
incorrectly banked curves, high Curvature (lateral force), insufficient Drainage Gradient (hot 
spots at left hand curves and at deformed pavement sections), excessive Mega Texture (MeTx), 
insufficient Macro Texture (MaTx) and heterogeneous MaTx causing Split Friction. It is 
recommended that all of these parameters should be analyzed in road safety ratings, such as in 
the Euro Road Assessment Programme. 

The work of improving road network safety could gain much from being benchmarked with 
aviation safety work. Before using an airfield for international air traffic, the facility administrator 
must demonstrate that the runway surface provides the minimum required level of safety, as 
defined by the International Civil Aviation Organization. Today, aircraft seldom crash due to 
deficiencies in the runway condition. 

In Norway, all lanes of all paved highways are profiled annually in both directions. In Sweden, 
only one lane in one direction is monitored at least every fifth year. One consequence of this 
lesser measurement strategy is that when a serious crash occurs, it is often necessary to carry 
out extra profilometer measurements to obtain sufficient accurate data for the investigation. It is 
not possible to take laser/inertial measurements on icy roads or at temperatures below 0 °C.  



 Page 131  

 

ROADEX III The Northern Periphery Research 

9.4 IMPROVED ROAD MANAGEMENT 
It should be a top priority within a road agency to recognise the importance of good road 
condition to comfortable, stress-free, healthy and safe road use.  

A key factor in the reduction of professional drivers’ daily exposure to vibration A(8) is the 
effective reduction of road roughness. This calls for a good focus in the selection of road repair 
sections, the planning of repair methods, the performing repair work, and in the end control.  

The profilometer data held in a road agency’s Pavement Management System (PMS) is a 
powerful tool for the management of paved roads, and its use should be encouraged and 
developed. Special training courses in the application of data would be beneficial, as would 
interregional, and international, benchmarking between road agencies local offices. 

As seen in the case study, much of the truck ride problem relates to long wave unevenness and 
pavement edge deformations. The new Rut Bottom Cross Slope Variance (RBCSV) parameter 
should be implemented immediately in PMS. Effective repair of long wave unevenness and 
RBCSV is a new target for the road maintenance sector, requiring new methods. Detailed 
drawings should be made per 5 m section, showing target values for asphalt overlay thickness 
(including depth of grinding, if milling machines are to be used) and redesigned Cross Slope. A 
computer aided method for this is already in practice for high volume roads. This method should 
also be used on low and medium volume roads. Asphalt machines should be equipped with 
machine control systems, so they can perform the designed repair work effectively. Such 
systems are in use on airfield runways and high volume roads. The time has come to implement 
similar solutions on low and medium volume roads as well.  

Why does such a large proportion of the road length in Sweden have severe pavement edge 
deformations as a result of weak road shoulders? Perhaps the design of pavement 
edge/shoulders should be reviewed. Is the quality of the road materials too poor? Are the road 
structure layers too thin? Could the reason be insufficient shoulder width and/or too steep em-
bankment? These questions need to be answered. The deformed pavement edge at HS 
Meåstrand on Rd 331 in Figure 61 does not compare favourably with the stable Danish road 
edge design shown in Figure 94. 

 

Figure 94 A Danish stabile pavement edge with paved shoulder and a wide grass verge 
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The SRA Northern Region has been using laser/inertial profilometry in the control of roughness 
of new pavements for almost 10 years. Their experience is that the technology can result in 
much smoother new pavements without raising the price of paving. The outcome is lower ride 
vibration, longer pavement service life, and thereby lower road lifetime costs.  

Good road maintenance practice could be encouraged by giving an award to the “smoothest 
resurfacing project of the year”. This is already an accepted practice in Norway, but not in 
Sweden. Such an award would gain extra attention and status, if sponsored by stakeholders 
using the road, such as a truck haulage association. 

Good practice amongst contractors could also be encouraged by openly reporting profilometer 
measurement results after surfacing operations, possibly accompanied by a comment from the 
project manager on any gap between target and outcome. 

In the Northern Periphery the daily vibration exposure A(8) can be affected by winter 
maintenance operations. Poor snow ploughing response times can result in the formation of ice 
roughness on the surface of the road, which can cause intense vibration in the vehicle. Such 
vibrations can also cause interior noise. Professional drivers are exposed to many stress 
factors, including vibration and noise. Stress can also occur in the internal conflict in a driver 
when he, or she, has to decide whether to reduce vehicle speed to match poor road conditions, 
and thereby delay a delivery, or continue to try to meet the schedule, possibly as an accident 
risk. As presented in this report, researchers suspect the prevalence of increased stress 
hormones in the blood to be the cause of the strongly increased prevalence of myocardial 
infarction among the drivers. Therefore it is important to reduce as many stressors as is 
possible. Some types of stress can be reduced by good information on the route conditions, but 
the prevention of poor road conditions should not be underestimated. 

A special concern is transient vibration/shock at bumps. A special program should focus on re-
pair and prevention of bump hot spots, such as at culverts (see section 8.6 Rethink culvert 
works), bridge joints, frost related deformations and potholes.  

Roughness after culvert repair should be carefully monitored for the following three years. 
Culverts requiring emergency repairs during the winter should be revisited in the first summer. 

A significant share of the road network is repaired each summer. Road roughness can be 
extreme during road repairs, and this can contribute to high vibration exposure A(8) to truck 
drivers. It is therefore important to try to restrict road repair section length and maximum 
roughness levels during reconstruction works. 

It could be cost-efficient to make a special contract for bridge joint roughness repair. This could 
permit the successful contractor to assemble a team of specialists to repair the settlements at 
low cost in the spring, ahead of the main paving season. 
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Transient wheel vibration can be caused by poor joints in patch repairs. The case study shows 
several examples of some 2 cm high joints, causing wheel axle bounce and tramp-related pol-
ishing resulting in very low friction. It is recommended that no patching should be carried out 
without 2 cm deep edge grinding, to enable a proper joint with the adjacent road surface. Only 
very local patches such at potholes should be exceptions from such a practice. Preparatory 
edge grinding should be carried out at the repair of bumps at culverts and of pavement edge 
deformations. An example of small size grinding machines now available on the market is 
shown in Figure 95. 

 

Figure 95 A small asphalt grinder [Photo: Tobias Edberg, SRA Production] 

 

Double surface dressings should be considered in preference to single surface dressings as 
they have less Mega Texture (MeTx).  

Maximum limits for MeTx should be implemented as soon as possible. 

The current standards for laser/inertial road condition profilometry of newly laid pavements 
should be revised. The Swedish profilometry standard “VVMB 116” does not require reporting of 
key safety parameters such as Curvature (plots of Cross Slope vs. Curvature), Longitudinal 
Gradient (to be combined with CS, when calculating Drainage Gradient), Rut Bottom Cross 
Slope Variance, Mega Texture and Macro Texture. 

Pavement condition data should be stored in 1 m steps, rather than the present 20 m steps, or 
longer, used by the national road administrations in the Northern Periphery. Should it be 
required, this new style of data can be readily re-calculated as a “running 20 m” value for 
comparison with old 20 m data. Such results are still “20 m values”, directly comparable with 
existing data, limits and preferences. However, “running 20 m” values with a 1 m update step 
length are much better in reflecting local bumps, than traditional 20 m values with a 20 m update 
step length are.  

Road workers can be exposed to unacceptable Whole-Body Vibration (WBV). Typical examples 
of these are drivers of snow ploughing trucks and operators of asphalt paving machines, as in-
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dicated in Table 2. Road agencies should start to measure WBV for these workers. In Sweden, 
drivers of contracted snow-ploughing trucks have filed complaints in respect of newly milled 
rumble strips in the centre of many roads. These are alleged to cause work related health prob-
lems due to their excessive ride vibration and noise.  

The Tylösand Declaration states that road administrators are obliged to identify Hazardous Sites 
(HS) quickly, warn road users, and make appropriate repairs. 

The proper identification of Hazardous Sites on low volume roads is an important issue. The 
case study demonstrates that there is a strong correlation between accident black spots and 
poor road condition. However, many of the worst pavement damages were in the section Backe 
- Ramsele which does not show any major black spots. The reason for this is the very low traffic 
volume on the section. It has an AADT of less than 350 vehicles per day. Obviously there is an 
urgent need to use the “Individual Risk” approach for low volume road networks. In this ap-
proach, it is not enough to analyze the number of accidents; the numbers must also be normal-
ized to (divided by) the AADT figure. The Individual Risk approach is promoted by road user or-
ganizations, such as the Royal Automobile Club of Victoria, as it increases the likelihood of 
identifying very Hazardous Sites on low volume roads [64].  

One drawback with the Individual Risk approach is that the low numbers involved make the 
assessment more susceptible to randomness. A way to increase the accident numbers, and 
thereby reduce the influence of risk, is to include data from registers of insurance companies. 
These registers hold more data than databases such as STRADA in Sweden where only Police 
and Hospital reported crashes are registered. 

Another method to identify Hazardous Sites is to analyze road condition data from laser/inertial 
profilometers, see the previous section for examples of key safety parameters. The collation of 
accident data from STRADA versus Profilograph data shows a valuable potential that should be 
further explored. However, in the case study many examples were found of poorly positioned 
crash records in STRADA, including lethal crashes such as at HS S Viksjö. A separate project 
should seek to improve the quality of such crash record positions. It is also important to develop 
and refine generalized relationships between road condition and accident risk, such as in Figure 
5. 

A further option is to ask road users to identify their perceptions of hazardous sites. Focus 
groups, incorporating regular road users such as Brorssons Åkeri AB on Rd 331, may be a good 
tool for this. In Finland, the Internet-based “Street Channel” / KatuKanava [56] is used to map 
road user opinions. Improved customer focus by roads management may also bring better road 
user satisfaction. 

There is a need for better standardization in setting up warning signs on roads. At present there 
are no objective limits for erecting a bump warning sign. Such a limit should be defined with re-
spect to road condition data from profilometers as well as a subjective decision on “need”. Simi-
larly, there should be objective limits for when to warn for high Curvature (lateral force), rutting, 
incorrectly banked curves, and skid risk due to too low, or varying, Macro Texture. There should 
also be limits on the length of road section that can have a Drainage Gradient below 0.5 m, be-
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fore a warning should be given. It is impossible to sign for all of such flat areas, as they currently 
exist at almost every left hand curve (right hand curve in the UK). 

It is not enough however to identify Hazardous Sites and put up additional warning signs. The 
road network needs to be more skid resistant and less unhealthy, by focusing actions at the 
identified hot spots. This requires a long-term program, with significant funding. Such a program 
could benefit of a benchmarking with Transit New Zealand’s Truck Ride Improvement Initiative, 
running with a 3M$ annual budget since 2001. 

Cross Slope (CS) is identified as a key factor for skidding and its modification requires 
substantial amounts of road material, and consequently substantial funding. For these reasons it 
is recommended that CS should also be analyzed on a road network level. The new RBCSV 
parameter is suitable for such a purpose as it is easy to interpret. A higher RBCS value shows a 
higher need for road repair and greater funding.  

A slightly more difficult analysis is that of dynamic imbalance due to the ratio of CS to Curvature, 
the “incorrectly banked curves” in the report. Further research should seek methods to quantify 
the problems with incorrect banking at the road network level. This is important, as the recon-
struction of slopes in existing curves requires significant quantities of road materials and thus 
significantly larger funding than traditional overlays of ruts and short wave roughness. Plots, as 
Figure 73, should be employed in the programming, planning and detailed design of the repair, 
as well as in the quality control of finished work. 

An easy-to-use parameter is the Drainage Gradient (DG). This is a key safety parameter as 
demonstrated in the case study and should exceed 0.5 % to avoid water ponding problems. 
Road agencies with DG in their databases will find it easy to identify those sections that have 
DG below the safety limit 0.5 %.  

Suitable software can identify road sections with insufficient DG from existing databases and 
during a typical search it can also be possible to identify other flat sections requiring 
rehabilitation. Examples of the latter type can be found at the HS Björknäset and the HS 
Helgum. Repair of such weak sections should be designed by support of bearing capacity 
testing with a falling weight deflectometer. 

Road agencies should require their road designers to report the designed DG, especially at 
entrances and exits of left hand curves (UK: right hand curves). Consultants and Contractors 
should face high penalties if their work results in Drainage Gradients that are too low. 

The limit of 0.5 % DG is tight, and requires high measurement accuracy. DG is calculated from 
Cross Slope and Longitudinal Gradient. It is possible to report both of these parameters from 
most laser/inertial profilometers on the market. However, most profilometers do not measure the 
road’s Longitudinal Gradient. Rather they only measure the gradient of the profilometer vehicle 
body. The grade of the vehicle and the road grade often differ significantly, especially when the 
profilometer vehicle accelerates or brakes. When this occurs the difference can be very large. 
The vehicle grade can also change in response to changes in wind load, the level of fuel in the 
fuel tank, and other changes in load. The SRA CS Profilograph used in the case study has an 
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accurate system for road grade measurement, taking into account the vehicles own pitch angle 
in relation to the road. Without such a system, profilometer reported grades/Drainage Gradients 
might not be sufficiently accurate to be useful in analyzing the risk for skid accidents. This 
should be considered when purchasing road condition measurements.  

The allocation of existing road maintenance funding should be reviewed. The repair of 
pavement deformation with high RBCSV in the Northern Periphery costs more than overlays of 
rough, but much more planar, surfaces in the southern areas. Repair of incorrectly banked 
curves and insufficient Drainage Gradient require even more funding, as significant quantities of 
road materials are needed. Such road repairs are one-time investments, since slopes, once 
created, do not normally change significantly over time. 

There should be an extra focus on maintaining high road surface friction in sharp and incorrectly 
banked curves and at the downhill part of long and steep grades. This can be done by 
increasing the use of high friction surfacings and intensified winter maintenance. 

The failure mode at HS S Viksjö shows that the barrier may be undersized. In three lethal 
crashes, heavy trucks have made a big hole in the standard crash barrier. There is therefore an 
acute need for crash barriers to have the capacity to retain heavy vehicle combinations with up 
to 60 tonne gross vehicle weight (GVW). There are plans to increase the max GVW to 80 - 88 
tonnes in Sweden. Such plans should be reconsidered on those road networks that do not have 
crash barriers with the relevant heavy truck capacity. 

Measurements of Split Friction risk potential should be carried out on road sections with new 
patch repairs, such as the repair seen in Figure 61. The friction numbers should be measured in 
both the left and right wheel track, focusing on the difference between them. 

Profilometer results should be systematically used in traffic safety inspections and analysis. Left 
hand curves (Right hand curves in the UK) are hot spots for hazardous road alignment errors., 
Only one lane in one direction is currently monitored in Sweden in accordance with the road 
surface profilometry strategy of the SRA. This lane is scanned at least every fifth year. One of 
the net effects of this strategy is that the PMS does not include relevant data for 50 % of the left 
hand curves on the network (important geometrical parameters may be totally different in the 
opposed directions). Temporary changes should be made in the measurement strategy, aiming 
to result in having relevant geometrical data from every lane within three years from now.  

A consequence of a limited road condition measurement strategy is that, in the event of a 
serious having to be investigated, it may be necessary to carry out additional profilometer 
measurements to obtain sufficiently accurate data for the investigation. Such non-scheduled 
measurements are more expensive than systematically planned measurements. 

When planning actions to improve safety at road sections suffering from many skid accidents on 
wet pavement or thin ice, such as HS Stavreviken, resurfacing with high friction double surface 
dressings should be tried before planning to build expensive new road sections. Speed 
monitoring displays could reduce skid accidents at such sites. 
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As recommended by the group analysing lethal crashes in Norway’s Central Region, the time 
tolerance for removing wet snow (which is risky as snow, and later, after forming ice ruts) should 
be reduced. Furthermore, the contractor performing daily road maintenance should be paid for 
making extraordinary friction improvement actions when weather conditions become extreme 
[72]. 

 

9.5 ROAD DESIGN POLICY IMPROVEMENTS 
Left hand curves should be identified as hot spot sections for insufficient Drainage Gradient 
(DG) in road design manuals (right hand curves in the UK). 

The minimum limit on DG should be raised. The present design limit of 0.5 % should be 
redefined as a rare exception, as it is too close to the normal deviations in road construction 
works (about 0.5 % is allowed Cross Slope deviation in the Swedish ATB VÄG road 
construction manual). In practice, this means that a “properly designed” section of road may end 
up with an insufficient DG if the construction on site is only just inside the tolerance limits. 
Considering the need for a reasonable production tolerance, the normal design limit needs to be 
raised, up to about 1 %. 

The RBCSV concept should be implemented in manuals for redesign of existing roads.  

Low-permeable material should be considered for culvert foundations.  
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9.6 WORK TO BE CONTINUED (IN ROADEX IV?) 
This project suggests a draft limit value of 0.30 % for undesired Variance of the pavement’s Rut 
Bottom Cross Slope (RBCS). Further work should draft differentiated RBCSV limit values, 
depending on road/lane width, curvature and length of curve. It should be noted that the RBCSV 
is normalized to a user defined reference speed. Therefore the same limit value can be used for 
50 km/h roads as for 90 km/h roads.  

How common are the road damages found on Rd 331 on roads in the Northern Periphery 
partner area? 

The comfort scale in ISO 2631 is relevant for people in public transportation and there are 
indications that professional drivers may have a somewhat higher comfort tolerance. Should a 
special comfort scale be developed for professional drivers? 

A scale and a limit value should be drafted for short road roughness that causes tramp-related 
polishing and thus extremely low friction. Mega Texture could be used as one parameter, but 
0.5 - 2.5 m roughness could also be addressed. 

The relation between speed and vertical truck seat vibration is fairly well known. But the relation 
between speed and roll/lateral vibration should be further explored. (However, there are no 
indications on a larger speed dependence on roll, as compared to vertical bounce). 

The correlation of road surface texture and truck interior noise should be mapped. 

Whole-Body Vibration, Hand-Arm Vibration as well as interior noise should also be measured 
when driving heavy vehicles on winter roads with ice ruts accompanied by high Mega texture on 
the ice edges. 

The effect of changing winter road maintenance standards on ride vibration should be 
investigated. 

The impact of general road roughness should be mapped against the ability to perform efficient 
snow ploughing in winter. 

Why does such a large proportion of the road length have severe pavement edge deformations? 
The design of pavement edge/shoulders could be reviewed. Is the quality of the road materials 
too poor? Are the road structure layers too thin? Could the reason be insufficient shoulder width 
and/or too steep embankment?  

A method to quantify the problems with incorrect banking at the road network level could be de-
veloped. Such a method could be drafted from an analysis of plots such as Figure 73.  



 Page 139  

 

ROADEX III The Northern Periphery Research 

Chapter 10. Further reading 
 

[1]   Teschke, K., Nicol, A-M., Davies, H. & Ju, S. (1999). Whole Body Vibration and Back 

Disorders Among Motor Vehicle Drivers and Heavy Equipment Operators: A Review of 

the Scientific Evidence. Report to Workers' Compensation Board of British Columbia. 

[2]   Directive 2002/44/EC on the minimum health and safety requirements regarding the 

exposure of workers to the risks arising from physical agents (vibration). The European 

Parliament and the Council. 

[3]   Ahlin, K., Granlund, J. & Lundström, R. (2000). Whole-Body Vibration When Riding on 

Rough Roads – A shocking Study. Swedish National Road Administration, Vol. 31E.  
   Internet 2008-02-24: http://www.vv.se/filer/skakstudie.pdf. 

[4]   Sandover, J. (1998). High acceleration events: An introduction and review of expert 

opinion. Journal of Sound and Vibration 215(4), p 927 – 945. 

[5]   ISO 2631-5, Mechanical vibration and shock - Evaluation of human exposure to Whole-

Body Vibration – Part 5: Method for evaluation of vibration containing multiple shocks. 

(2004). International standard.  

[6]   Brandt, A. & Granlund, J. (2008). Bus Drivers’ Exposure To Mechanical Shocks Due To 

Speed Bumps. Society for Experimental Mechanics, IMAC-XXVI Conference on 

Structural Dynamics, Orlando, Florida, USA.  

[7]   Gillespie, T. D. (1992). Fundamentals of Vehicle Dynamics. 

[8]   Lindh, H. (2002). Ride Quality in Trucks – A Dynamic Challenge. Scandinavian Vibration 

Society, Symposium on comfort in vehicles and model verification, Riksgränsen, 

Sweden. 

[9]   Granlund, J., Lenngren, C.A., Lindström, F. & Mårtensson, B. (2005). Measuring 

Pavement Deflection Variance at Highway Speeds. 7'th Int Conf on Bearing Capacity of 

Roads, Railways and Airfields, Trondheim, Norway. 

[10]  Forsén, A. (1999). Heavy Vehicle Ride and Endurance. Modelling and model validation. 

Royal Institute of Technology, Stockholm, Sweden. PhD thesis, TRITA-FKT 99:33, ISSN 

1103-470X, 92 p 

[11]  Ahlin, K. and Granlund, J. (2003). Relating road roughness and vehicle speeds to 

human Whole-Body Vibration and exposure limits. The International Journal of 

Pavement    Engineering, Vol. 3, No. 4, pp.207-216. 



 Page 140  

 

ROADEX III The Northern Periphery Research 

[12]  The AASHO Road Test. Special Reports 61A-61E. HRB, National Research Council. 

Washington, D.C., 1961 

[13]  Granlund, J. & Lindström, F. (2004). Reducing Whole-Body Vibration by geometric repair 

of pavements. J. Low Frequency Noise, Vibration and Active Control, Vol. 23, No 2, pp. 

103-114. 

[14]  Öijer, F. & Edlund, S. (2004). Identification of Transient Road Obstacle Distributions and 

Their Impact on Vehicle Durability and Driver Comfort. Supplement to Vehicle System 

Dynamics, Vol 41, pp 744-753. 

[15]  Vägars och gators utformning. (Design manual for roads and streets). (2004). Swedish 

Road Administration, publ 2004:80 

[16] A Policy on Geometric Design of Highways and Streets. (1984, 1990, 1994 and 2001). 

American Association of State Highway Officials (AASHO), Washington D.C.  

[17]  EN ISO 8041, Human response to vibration – Measuring instrumentation. (2005). 

European and International standard. 

[18] ISO 2631-1, Mechanical vibration and shock – Evaluation of human exposure to Whole-
Body Vibration – Part 1: General requirements. (1997). International standard. 

[19] Ahlin, K., Granlund, J. & Lindström, F. (2004). Comparing road profiles with vehicle 
perceived roughness. Int. J. Vehicle Design, Vol. 36, Nos. 2/3, pp.270-286. 

[20]  Strategisk plan för drift, underhåll och bärighet 2004 – 2015 (Strategic plan for road 

operations, maintenance and bearing capacity). Swedish Road Administration, Central 

Region. 

[21]  Granlund, J. (2006). Nytt mått på tvärfall. (How to Measure Rut Bottom Cross Slope and 

its Variance). SRA Consulting Services, report for Swedish Road Administration, Head 

Office.  
   Internet 2008-02-24: http://www.vv.se/fudinfoexternwebb/pages/PublikationVisa.aspx?PublikationId=241  
[22]  Bogsjö, K. (2007). Road Profile Statistics Relevant for Vehicle Fatigue. PhD thesis, Lund 

University, ISRN LUTFMS-7032-2007, ISBN 978-91-628-7291-5. 

[23]  Den goda resan: Förslag till nationell plan för vägtransportsystemet 2004 – 2015. 

Underlagsrapport Trafiksäkerhet. Handlingsplan för trafiksäkerhet. (Proposed national 

long term plan for the road transport system – Traffic safety action plan). Swedish Road 

Administration, VV publ 2003:101 



 Page 141  

 

ROADEX III The Northern Periphery Research 

[24] Bereton, P.F., Donati, P.M., Fischer, S., Griffin, M.J., Howarth, H.V.C., Kaulbars, U. & 

Pitts, P.M. (2006). EU Guide to good practice on Whole-Body Vibration. 

[25] Gallaway, B.M. & Rose, J.G. (1971). The effect of rainfall intensity, pavement cross 

slope, surface texture and drainage length on pavement water depths. Texas 

Transportation Institute, Research Report No. 138-5. 

[26] Bigert, C. Klerdal, K., Hammar, N., Hallqvist, J. & Gustavsson, P. (2004). Time trends in 

the incidence of myocardial infarction among professional drivers in Stockholm 1977-96. 

Occup Environ Med; Vol 61, p 987 - 991. 

[27] Perspectives in Disease Prevention and Health Promotion Leading Work-Related 

Diseases and Injuries. US National Institute for Occupational Safety and Health. 

[28] Ahmadian, M. & Ahn, Y.K. (2003). On-Vehicle Evaluation of Heavy Truck Suspension 

Kinematics. SAE TB 51. 

[29] Guidelines for Air and Ground Transport of Neonatal and Pediatric Patients. (1999). 

Task Force on Interhospital Transport, American Academy of Pediatrics. 

[30] Campbell, K.L., Erwin, R.D., Gillespie, T.D., Segel, L. & Schneider, L.W. (1982). Truck 

Cab Vibrations and Highway Safety. Highway Safety Research Institute, University of 

Michigan. FHWA report RD-82/093 

[31] Ihs, A., Velin, H. & Wikström, M. (2002). Vägytans inverkan på trafiksäkerheten. (The 

influence of road surface condition on traffic safety). Väg- och 

TransportforskningsInstitutet, VTI medd 909 

[32] Hedberg, G.E., et al. (1991). Mortality in circulatory diseases, especially ischemic heart 

disease, among Swedish professional drivers. J Human Ergol., Vol 20, p 1-5. 

[33]  Hedberg, G.E., et al. (1993). Risk indicators of ischemic heart disease among male 

professional drivers in Sweden. Scand. J Work Environ Health, Vol 19, p 326-333. 

[34]  Hedberg, G.E. & Langendoen, S.M. (1989). Factors Influencing the turnover of Swedish 

Professional Drivers. Scand. J Soc Med, Vol 17, p 231-237. 

[35] Campbell, K., Gillespie, T., Segel, L. & Schneider, L. (1981) State of knowledge review: 

Relationship of truck ride vibration to highway safety. Highway Safety Research Institute, 

University of Michigan. FHWA report RD-81/083 

[36] Armstrong, B., Cherry, N.M., Cote, R., Lavoie, J., McDonald, A.D., McDonald, J.C., 

Nolin, A.D. & Robert D. (1988). Fetal death and work in pregnancy. Br J Ind Med, Vol 

45(3), p 148-157. 



 Page 142  

 

ROADEX III The Northern Periphery Research 

[37] McFarlane, S. & Sweatman, P.F. (2003). Investigation into the Specification of Heavy 

Trucks and Consequent Effect on Truck Dynamics and Drivers: Final Report. Report 

prepared for FORS by Roaduser International Pty Ltd 

[38] De Solminihac, H. E., Echaveguren, T. & Vargas, S. (2007). Friction Reliability Criteria 

Applied to Horizontal Curve Design of Low-Volume Roads. Transportation Research 

Board of the National Academies, Washington D.C. Transportation Research Record, 

No 1989, Vol 1, pp 138-147 

[39] Persson, J. & Strandroth, J. (2005). Halkolyckor med dödlig utgång 2000 - 2004 (Fatal 

skid accidents). Swedish Road Administration, VV publ 2005:83 

[40]  Allmän Teknisk Beskrivning för VÄGkonstruktioner - ATB VÄG. Swedish Road 

Administration, publ 2005:112 

[41] Standard for drift og vedlikehold, Håndbok 111 (Standard for operations and 

maintenance). (2003). Norwegian Road Administration. 

[42] Glennon, J.C. (2004). Hydroplaning - The Trouble With Highway Cross Slope. Internet 

2008-02-24: http://www.johncglennon.com/papers.cfm?PaperID=8  

[43] Cenek, P., Jamieson, N. & Owen, M. (2003). Transit New Zealand´s Truck Ride 

Improvement Initiative. REAAA/ARRB International Conference. 

[44] Krafft, M., Kullgren, A., Lie, A. & Tingvall, C. (2006). The Effectiveness of Electronic 

Stability Control (ESC) in Reducing Real Life Crashes and Injuries. Traffic Injury 

Prevention, Vol 7, No 1, pp 34 – 43. 

[45] Bowler, R., Dunne, M. & McCormick, M. (2001). Survey of Commercial Truck Drivers: 

Valuing Their Priorities for Improving New Zealand’s State Highways. Australasian 

Transport Research Forum, Hobart. 

[46] Jonforsen, H. (2007). Climate change and effects on airports. Innovative Pavements 

Europe, Stockholm 

[47] Bovenzi, M. & Hulshof, C.T.J. (1999). An updated review of epidemiologic studies on 

the relationship between exposure to Whole-Body Vibration and low back pain (1986-

1997). Int Arch Occup Environ Health (1999) 72:351-365 

[48] Spång, K. (1997). Assessment of Whole-Body Vibration containing single event shocks. 

Noise Control Eng. J., 45(1), 1997, pp 19-25. 

[49] Saarenketo, T. & Saari, J. (2004). User perspective to ROADEX II test area’s road 

network service level. The ROADEX II project. Internet 2008-02-24: www.roadex.org 



 Page 143  

 

ROADEX III The Northern Periphery Research 

[50] Foster, G., Long, A. & McPhee, B. (2001). Bad Vibrations. A handbook on Whole-Body 

Vibration exposure in mining. The Joint Coal Board Health & Safety Trust 

[51] Hassan, R. & McManus, K. (2001). Heavy Vehicle Ride and Driver Comfort. SAE World 

Congress, session on Human Factors in Automotive Design. Detroit, Michigan, USA 

[52] Cebon, D. (1999). Handbook of Vehicle-Road Interaction. University of Cambridge, 

England. 

[53] Strandberg, L. (1974). The dynamics of heavy vehicle combinations. Statens Väg- och 

Trafikinstitut, Stockholm. Internrapport 172 

[54] UK Design Manual for Roads and Bridges. Volume 6, Road Geometry.  

[55] Mahone, D.C. (1975). An Evaluation of the Effects of Thread Depth, Pavement Texture, 

and Water Film Thickness on Skid Number : Speed Gradients. Virginia Highway and 

Transportation Research Council, Charlottesville, USA. 

[56] Saarenketo, T. (2005). Monitoring, Communication and Information Systems & Tools for 

Focusing Actions - Ideas and Innovations. The ROADEX II project.  
Internet 2008-02-24: www.roadex.org 

[57] Mechanical vibration - Testing of mobile machinery in order to determine the vibration 

emission value. European Standard, EN 1032 (2003). 

[58] Westerling, R. (2008). Åtgärdbar dödlighet som en indikator i den folkhälsopolitiska 

uppföljningen. (Avoidable mortality as an indicator in the evaluation of public health 

politics). Statens folkhälsoinstitut, Rapport 2008:03 
Internet 2008-02-24: www.fhi.se/shop/material_pdf/Atgardbar_dod_webb_0802.pdf  

[59] Mansfield, N.J. & Newell, G.S. (2004). Exploratory study of Whole-Body Vibration 

“artefacts” experienced in a wheel loader, mini-excavator, car and office worker’s chair. 

39’th United Kingdom Group Meeting on Human Responses to Vibration. 

[60] Els, P.S. (2005). The applicability of ride comfort standards to off-road vehicles. Jour 

Terramechanics, Vol 42, p 47-64. 

[61] Marjanen, Y. (2005). Using ISO 2631-5 as an additional Whole-Body Vibration 

evaluation method with ISO 2631-1 to include also transient shocks to the analysis. 12’th 

International Congress on Sound and Vibration, Lisbon, Portugal. 

[62] Alem, N. (2005). Application of the New ISO 2631-5 to Health Hazard Assessment of 

Repeated Shocks in U.S. Army Vehicles. Industrial Health, Vol 43, p 403-412. 



 Page 144  

 

ROADEX III The Northern Periphery Research 

[63] Waters, J.C. & Pidwerbesky, B.D. (2008). Watercutting – investigating the lifecycle of 

watercutter rejuvenation of aggregates. Land Transport New Zealand Research Report 

336 

[64] Ogden, K.W. & Daly, P,S. (2007). Some Roads are Safer than Others, and Here’s Why. 

World Road Association, 23’d World Road Congress, Paris. 

[65] Hunter, R.N. (2000). Asphalts in road construction. Thomas Telford Publishing. 

[66] Jacobsson, T. (2008). Stålslagg i asfaltbeläggning. (Steel slag in asphalt mixtures). 

Swedish National Road and Transport Institute, VTI notat nr 5.  
Internet 2008-03-03: http://www.vti.se/EPiBrowser/Publikationer/N5-2008.pdf  

[67] Jacobsson, T. (2007). Polering av asfaltbeläggning. (Polishing of the coarse aggregate). 

Swedish National Road and Transport Institute, VTI notat nr 25.  
Internet 2008-03-03: http://www.vti.se/EPiBrowser/Publikationer/N25-2007.pdf  

[68] LeRoy, D. (2006). Smooth operators. SAE Off-Highway Engineering. 

[69] Nilsson, U. (2004). Ride Quality in Ambulances – Modelling and Model Validation. Royal 
Institute of Technology, Stockholm, Sweden. MSc thesis, TRITA-AVE 2004:20, ISSN 
1651-7660. 

[70] The Swedish Work Environment Act, chapter 3 paragraph 14. (1977, 2005). 
Internet 2008-03-03: http://www.av.se/inenglish/lawandjustice/workact/chapter03.aspx  

[71] Förstudie Väg- och järnvägskorsning i Stavreviken, Väg 331, 681, 684 och 683. 
(Feasibilty study of road- and railway crossing in Stavreviken). (2003). Vägverket Region 
Mitt. Internet 2008-03-03: http://www.vv.se/filer/5304/stavre_forslh_jan03_liten.pdf  

[72] Dybteanalyse av dödsulykker i vegtraffiken i Region midt i 2006. (In-depth analysis of 

lethal crashes in the road traffic within the Central Region during 2006). (2007). Statens 

Vegvesen, Norge. Internet 2008-03: 

http://www.vegvesen.no/cs/Satellite?c=Page&cid=1168004567453&pagename=vegvesen%2FPage%2FSV

VsubSideInnholdMal 

[73] Fördubbling av trafikolyckor i Ådalen (Doubled number of road traffic crashes in Ådalen). 

(2008). Allehanda. Internet 2008-03-16: http://allehanda.se/avdelning/kramfors/22811 

 



 Page 145  

 

ROADEX III The Northern Periphery Research 

Comfort, comfort my people, says your God. 
A voice of one calling in the desert; 

-Prepare the way for the Lord, make straight paths for him. Every valley shall be filled in, every 
mountain and hill made low. The crooked roads shall become straight, the rough ways smooth.  

The path of the righteous is level; O upright One, you make the way of the righteous smooth. 
And all mankind will see God's salvation. 

[Isaiah 26:7, Isaiah 40:1,3-5, Luke 3:5] 
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